




Whitestein Series in Software Agent Technologies and Autonomic Computing

Series Editors:
Monique Calisti (Editor-in-Chief)
Marius Walliser
Stefan Brantschen
Marc Herbstritt

The Whitestein Series in Software Agent Technologies and Autonomic Computing reports 
new developments in agent-based software technologies and agent-oriented software 
engineering methodologies, with particular emphasis on applications in the area of
autonomic computing & communications.

The spectrum of the series includes research monographs, high quality notes resulting 
from research and industrial projects, outstanding Ph.D. theses, and the proceedings of
carefully selected conferences. The series is targeted at promoting advanced research and
facilitating know-how transfer to industrial use.

About Whitestein Technologies

Whitestein Technologies is a leading innovator in the area of software agent technologies 
and autonomic computing & communications. Whitestein Technologies‘ offering includes 
advanced products, solutions, and services for various applications and industries, as well 
as a comprehensive middleware for the development and operation of autonomous,
self-managing, and self-organizing systems and networks.
Whitestein Technologies‘ customers and partners include innovative global enterprises,
service providers, and system integrators, as well as universities, technology labs, and 
other research institutions.

www.whitestein.com



Emerging Web Services 
Technology
Volume II

Thomas Gschwind
Cesare Pautasso
Editors

Birkhäuser
Basel · Boston · Berlin



2000 Mathematical Subject Classification:  68-06, 68Q60, 68T05, 68T27, 68T35, 68U35

Library of Congress Control Number: 2007929515

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

ISBN 978-3-7643-8863-8 Birkhäuser Verlag AG, Basel – Boston – Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, re-use of 
illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and 
storage in data banks. For any kind of use permission of the copyright owner must be
obtained.

© 2008 Birkhäuser Verlag, P.O. Box 133, CH-4010 Basel, Switzerland
Part of Springer Science+Business Media
Printed on acid-free paper produced from chlorine-free pulp. TCF ∞
Printed in Germany 

ISBN 978-3-7643-8863-8 e-ISBN 978-3-7643-8864-5

9 8 7 6 5 4 3 2 1 www.birkhauser.ch

Editors:

Thomas Gschwind Cesare Pautasso
Research Laboratory   Faculty of Informatics
IBM Research Division GmbH Zürich University of Lugano
Säumerstrasse 4 Via G. Buffi 13
8803 Rüschlikon 6904 Lugano
Switzerland e-mail: c.pautasso@ieee.org
e-mail: thg@zurich.ibm.com



Contents

Preface vii

Organization ix

Introduction xi

I. Opening Keynote

Schahram Dustdar
Emerging Web Services Technologies — Some Research Challenges Ahead 1

II. Service Discovery and Selection

Matteo Baldoni, Cristina Baroglio, Alberto Martelli, Viviana Patti and
Claudio Schifanella
Service selection by choreography-driven matching 5

Sebastian Stein, Katja Barchewitz and Marwane El Kharbili
Enabling Business Experts to Discover Web Services for Business Process
Automation 23

Ulrich Küster, Holger Lausen and Birgitta K¨K¨K onig-Ries¨
Evaluation of Semantic Service Discovery — A Survey and Directions for
Future Research 41

III. Service Composition

Freddy L´cu´ e, Eduardo Silva and Luis Ferreira Pires´
A Framework for Dynamic Web Services Composition 59

Kung-Kiu Lau and Cuong M. Tran
Composite Web Services 77



vi Contents

Anis Charfi, Rainer Berbner, Mira Mezini and Ralf Steinmetz
Management Requirements of Web Service Compositions 97

IV. BPEL Extensions

Dirk Habich, Sebastian Richly, Steffen Preissler, Mike Grasselt, Wolfgang
Lehner and Albert Maier
BPELDT — Data-Aware Extension for Data-Intensive Service Applications111

Hagen Overdick
Towards Resource-Oriented BPEL 129

V. Quality of Service

Sebastian Gajek, Lijun Liao, Jörg Schwenk and Bodo M¨¨ ller¨
SSL-over-SOAP: Towards a Token-based Key Establishment Framework for
Web Services 141

Eugenio Zimeo and Nadia Ranaldo
A Framework for QoS-based Resource Brokering in Grid Computing 159

Claus Pahl, Marko Boˇkovi´ˇ c and Wilhelm Hasselbring´
Model-Driven Performance Evaluation for Service Engineering 171

Author Index 187



Preface

The 2nd Workshop on Emerging Web Services Technology (WEWST’07) was colo-
cated with the 5th European Conference on Web Services (ECOWS’07) which took
place in November 2007 in Halle (Saale), Germany.

WEWST focuses on research contributions advancing the state of the art in
Web Services technologies. The main goal of the WEWST workshop is to serve
as a forum for providing early exposure and much needed feedback to grow and
establish original and emerging ideas within the Web Services community. The
wide variety of tools, techniques and technological solutions presented in WEWST
share one common feature: they advance the current Web Services research in new
directions by introducing new, sometimes controversial, ideas into the field. As
such, WEWST is the natural extension to the main ECOWS conference.

As it can be seen from the workshop program, the spectrum of research topics
related to such emergent technologies includes: the challenge of adopting RESTful
Web Services and Resource Oriented Architectures; Dynamic Web Service Dis-
covery, Selection and Composition; extensions to the standard Business Process
Execution Language; the management of composite Web Services; the delivery
of well defined Quality of Service guarantees; the performance evaluation of Web
Services. These are all still among the hot topics in Web Services research since
no satisfactory solution has been found yet.

We would like to thank the authors of the papers for their submissions and
for their contribution to the timely preparation of these proceedings, as well as
for their high quality presentations and lively discussions during the workshop. At
the same time, we would like our Program Committee for their hard work and
for submitting their excellent reviews on time. For this edition of WEWST, out
of 34 high quality submissions, we were able to accept 7 as full papers and 4 as
short papers. We are also grateful to our keynote speaker, Schahram Dustdar,
for sharing his insights on future research challenges of Web Services and putting
them into perspective of the papers we have selected. His presentation was kindly
supported by the IBM Zurich Research Lab and by the University of Lugano.¨
We would also like to thank Monique Calisti and Whitestein Technologies AG,
for the invaluable support in finding a suitable venue for publishing the workshop
proceedings and Marc Herbstritt from Birkhauser Verlag AG for fast tracking the¨
WEWST proceedings through the publication process. Last but not least, we would
like to thank the ECOWS conference organizers (Birgitta König-Ries, Claus Pahl,¨
and Wolf Zimmermann) for their trust and availability to make this workshop a
success.

Thomas Gschwind and Cesare Pautasso
Program Chairs WEWST’07

Ruschlikon – Lugano¨
May 2008



Organization

Program Chairs

Thomas Gschwind, IBM Research, Switzerland
Cesare Pautasso, University of Lugano, Switzerland

Program Committee

Luciano Baresi, Politecnico di Milano, Italy
Elisa Bertino, Purdue University, USA
Walter Binder, University of Lugano, Switzerland
David Breitgand, IBM Haifa, Israel
Christoph Bussler, BEA, USA
Fabio Casati, University of Trento, Italy
Malu Castellanos, HP, USA
Paco Curbera, IBM Watson, USA
Theo Dimitrakos, BT, UK
Jurgen Dunkel, FH Hannover, Germany¨
Schahram Dustdar, Vienna University of Technology, Austria
Daniela Grigori, Université de Versailles, France´
Alexander Keller, IBM, New York, USA
Frank Leymann, University of Stuttgart, Germany
Mark Little, Red Hat, UK
Makoto Matsushita, Osaka University, Japan
Claus Pahl, Dublin City University, Ireland
Dumitru Roman, DERI Innsbruck, Austria
Ulf Schreier, University of Furtwangen, Germany

Reviewers

Federica Paci
Harumi Kuno



Introduction

This 2nd volume on Emerging Web Services Technologies continues to follow the
current research activities in the areas of Web Services and Service Oriented Ar-
chitectures. By collecting the proceedings of the second Workshop of Emerging
Web Services Technology 2007 it contains many examples of promising research
activities cutting across a growing set of emerging technologies: service discovery
and selection, service composition, extensions to BPEL, security, quality of service
resource brokering and performance evaluation.

Part I opens the proceedings with an extended abstract outlining some of the
research challenges ahead as presented in the very well received keynote given by
Schahram Dustdar.

Part II continues this book with three chapters on service discovery and se-
lection. The first chapter by Baldoni, Baroglio, Martelli, Patti, and Schifanella
presents a novel approach to service discovery that goes beyond selection based on
operation semantics matching by taking into account the context of the lookup as
given by the choreography to which the service needs to conform. The second chap-
ter by Stein, Barchewitz, and El Kharbili takes a look at the problem of service
discovery from the perspective of business experts using the ARIS process model-
ing tool. The chapter gives a concrete example on how structural and semantics
matching techniques are starting to make an impact in industrial applications and
tools. The third chapter by Küster, Lausen, and K¨¨ onig-Ries concludes this part¨
by giving a thorough evaluation of current semantic service discovery efforts and
outlining several important future research challenges.

Part III covers service composition from three different perspectives. The first
chapter by Lécue, Silva, and Pires presents th´ e SPICE framework for dynamic
Web service composition. Services are chained taking into account their functional
description in terms of input, output, preconditions and effects as well as non-
functional properties. This results in a graph of semantic connections between
the services. The second chapter by Lau and Tran contributes a novel component
model tailored to recursive Web service composition. The third chapter by Charfi,
Berbner, Mezini, and Steinmetz gives an in-depth discussion of requirements for
the management of run-time aspects of Web service composition engines.

Part IV contains two extensions of the Business Process Execution Language
(BPEL) standard. The first chapter by Habich, Richly, Preissler, Lehner, Grasselt,
and Maier is about strenghtening BPEL to support data intensive applications.
To supplement the existing ’by value’ semantics, the authors introduce a new kind
of data transition amenable to performance optimizations. The second chapter
by Overdick foresees the application of BPEL to model the state of a RESTful
Web services and proposes the necessary language extensions to deal with the
identification and the uniform interface of resources.



xii Introduction

Part V collects three different contributions related to Quality of Service
(QoS) aspects. The first chapter by Gajek, Liao, Schwenk, and Möller addresses¨
the problem of establishing a secure end-to-end communication channel for Web
services. It leverages proven SSL/TLS mechanisms and applies them in the context
of the exchange of SOAP messages. The second chapter by Zimeo and Ranaldo
focuses on Grid resource brokering based on QoS guarantees. It presents a resource
discovery framework that is capable of satisfing execution performance constraints
of data-parallel applications virtualized as Web services. The final chapter by
Pahl, Boskovic, and Hasselbring proposes to enhance model-driven engineering ap-
proaches with instrumentation constructs for model-based, empirical performance
evaluation of service-oriented architectures.



Whitestein Series in Software Agent Technologies, 1–3
©c 2008 Birkhauser Verlag Basel/Switzerland¨

Emerging Web Services Technologies —
Some Research Challenges Ahead

Schahram Dustdar

More than ever, computing devices are becoming more powerful and net-
worked, organizational boundaries are dissolving, and underlying information sys-
tems become more complex, thus requiring higher degrees of autonomic behavior
of the business processes and software services they support. In this keynote talk
the main challenges towards building the required novel conceptual abstractions
as well as needed technological implementations are presented and discussed.

In the past several decades the industrial landscape changed dramatically.
Novel business models were increasingly introduced and successfully implemented.
More recently, the vision of Service-oriented Architecture (SOA) aims at providing
a model to allow realization of such novel, highly dynamic, adaptive, and com-
poseable information systems and services for such business models and processes.
SOAs are, in fact, mapping the real world unto the world of large-scale Internet-
based information systems. Today we find many businesses and industries being
“service-oriented”. For example, telecommunications, financial services, health-
care, logistics, just to name a few. Those industries became “service-oriented”
mainly through three factors: specialization, standardization, and scalability. All
those factors can be also witnessed as being crucial in our educational systems.
Standardization, in particular, is an important factor in the world of SOAs and
business processes. In fact, it seems that as we see in the real world in many exam-
ples (e.g., Starbucks) we increasingly move to global standards of various products
and services. In the Internet-world the same principle is applied to SOAs: Stan-
dards are being agreed upon and introduced (e.g., the Web services stack) and
novel methods for building such global large-scale systems are being promoted:

The SOA for the top-down enterprise-scale approach to business process de-
sign and service composition (build once and use many times), and more recently,
the service mashup approach (build once and use once), for the bottom-up end-
user (consumer) driven approach to service composition. Service mashups have
some additional characteristics, such as more or less concurrent design and exe-
cution, higher degree of user participation, and an overall agile approach to the
development process.



2 Dustdar

Why are those approaches to service composition and business process design
and management relevant at all? Why is it not enough to use workflow manage-
ment systems? Or is it enough? Well, in this paper, I argue that those traditional
approaches increasingly do not work. The reasoning is as follows: Throughout
the last decades we have seen that organizational boundaries increasingly became
fuzzy. Novel business alliances, including mergers and acquisitions, are occurring.
Such partnerships happen more often and faster than previously. Furthermore,
partnerships need to be highly dynamic and flexible, often depending on special
cases and on-demand policies. In technical terms we can say that there is increas-
ingly a need for information systems integration, however, the assumptions as we
knew them from the area of workflow management systems (e.g., first you model,
then you execute; after exceptions occur, remodel your process and enact again)
do not hold any longer due to the requirements of highly dynamic, flexible and
inter-connected organizations and people including the products and services they
offer, provide and produce. The distinction between design (model or built) time
and run time is starting to become obsolete. We need to spend more energy on
analyzing finer “granularities” of those “times”.

In this keynote I discussed the technical foundations, state-of-the art, and
assumptions as well as implications with regard to current technology trends and
summariz lessons-learned from four areas which are crucial to the topic of this
talk, i.e., Infrastructure Evolution, Software Evolution, Process Evolution, and
Teamwork Evolution.

About the Speaker

Schahram Dustdar is Full Professor of Computer Science with a focus on Internet
Technologies heading the Distributed Systems Group, Institute of Information
Systems, Vienna University of Technology (TU Wien) where he is director of the
Vita Lab. He is also Honorary Professor of Information Systems at the Department
of Computing Science at the University of Groningen (RuG), The Netherlands. He
is Chair of the IFIP Working Group 6.4 on Internet Applications Engineering and
a founding member of the Scientific Academy of Service Technology.

He received his M.Sc. (1990) and PhD. degrees (1992) in Business Informat-
ics (Wirtschaftsinformatik) from the University of Linz, Austria. In April 2003
he received his Habilitation degree (Venia Docendi in Angewandte Informatik)
for his work on Process-aware Collaboration Systems - Architectures and Coor-
dination Models for Virtual Teams. His work experience includes several years as
the founding head of the Center for Informatics (ZID) at the University of Art
and Industrial Design in Linz (1991-1999), Austrian project manager of the MICE
EU-project (1993 - 97), and director of Coordination Technologies at the Design
Transfer Center in Linz (1999 - 2000). While on sabbatical leave he was a post-
doctoral research scholar (Erwin-Schrödinger scholarship) at the London School¨
of Economics (Information Systems Department) (1993 and 1994), and a visiting



Emerging Web Services Technologies — Some Research Challenges Ahead 3

research scientist at NTT Multimedia Communications Labs in Palo Alto, USA
during 1998.

From 1999–2007 he worked as the co-founder and chief scientist of Caramba
Labs Software AG (CarambaLabs.com) in Vienna (acquired by Engineering Net-
World AG), a venture capital co-funded software company focused on software
for collaborative processes in teams. Caramba Labs was nominated for several
(international and national) awards: World Technology Award in the category of
Software (2001); Top-Startup companies in Austria (Cap Gemini Ernst & Young)
(2002); MERCUR Innovationspreis der Wirtschaftskammer (2002). Currently,
Prof. Dustdar is on the management board of the Association of the alumni of
the TU Wien.

He has published more than 160 scientific papers as conference-, journal-,
and book contributions. He has written 3 academic books as well as one profes-
sional book. His latest book, co-authored with H. Gall and M. Hauswirth, is on
software architectures for distributed systems (2003), Springer-Verlag. In 1997 he
co-authored a book on Multimedia Information Systems, Kluwer and co-edited the
book Telekooperation in Unternehmen, Gabler Verlag. He has published in various
journals including ACM Transactions on Internet Technology, ACM Transactions
on the Web, Distributed and Parallel Databases, Data and Knowledge Engineering,
Journal of Grid Computing, WWW Journal, IEEE Multimedia, Business Process
Management Journal, Journal of Systems Architecture, Journal of Organizational
Computing, Kluwer Multimedia Tools and Applications, Wirtschaftsinformatik,
and Journal of Computing and Information Technology. He co-organized several
scientific workshops and conferences (e.g., ICSOC 2007, BPM 2006, DiSD 2005
colocated with RE; Teamware colocated with SAINT; CSSE colocated with ASE;
UMICS 2003, 2004, 2005, 2006, colocated with CAiSE; DMC 2003, 2004, 2005,
2006 colocated with IEEE WETICE) and has been serving on more than 200
international program committees as well as on editorial boards of 10 scientific
journals. His research interests include collaborative computing, workflow systems,
Internet technologies, software architecture, distributed systems, distributed mul-
timedia systems, and mobile collaboration systems. He is charter member of the
Association of Information Systems (AIS), member of the IEEE Computer soci-
ety, ACM, GI, and Austrian Computer Society. He was an invited expert evaluator
for the IST 6th Framework (FP6) of the European Commission as well as an in-
vited expert for the 7th Framework roadmap definitions for some working groups.
He has been a scientific reviewer for a number of National Science Foundations
(e.g., DFG (Germany), NWO (Netherlands), EPSRC (UK), SFI (Ireland), NSERC
(Canada)).

Schahram Dustdar
Technische Universität Wien¨
Argentinierstrasse 8/184-1
A-1040 Wien, Austria
e-mail: dustdar@infosys.tuwien.ac.at



Whitestein Series in Software Agent Technologies, 5–22
©c 2008 Birkhauser Verlag Basel/Switzerland¨

Service selection by choreography-driven
matching

Matteo Baldoni, Cristina Baroglio, Alberto Martelli,
Viviana Patti, and Claudio Schifanella

Abstract. The greater and greater quantity of services that are available over
the web causes a growing attention to techniques that facilitate their reuse. A
web service specification can be quite complex, including various operations
and message exchange patterns. In this work, we focus on the problem of
retrieving a web service, which can play a given choreography role, preserv-
ing at the same time a condition of interest (the goal for which the service
is sought). We show that current semantic matchmaking techniques do not
guarantee goal preservation. We also show an approach for overcoming these
limits, which exploits the choreography definition. This work is based on an
action-based representation of the operations of a service: each operation is
described in terms of its preconditions and effects, without taking into account
the ontology layer which is not functional to the aims of the work.

Mathematics Subject Classification (2000). Primary 68Q60; Secondary 68T27.

Keywords. Web services, choreographies, semantic matchmaking, reasoning
about goals.

1. Introduction

Web services have a platform-independent nature, that endeavors enterprises to de-
velop new business processes by combining existing services, retrieved over the web
[21]. In the perspective of service reuse, the ability of retrieving services according
to particular needs is crucial. Of course, it is unlikely to discover services that
perfectly match a specification, some degree of flexibility is necessary. Nowadays,
service retrieval is basically performed through registries like UDDI [26], where
service advertisements are published. A common choice is to describe services by
WSDL [31] specifications. In this context, retrieval cannot yet be accomplished au-
tomatically as well as desired because the representations used and the discovery
mechanisms are semantically poor.



6 Baldoni et al.

The need of adding a semantic layer to service descriptions brought to initia-
tives like the development of the language OWL-S [22] and the development of the
Web Service Modeling Ontology (WSMO) [12]. In the semantic approach a richer
annotation, aimed at representing the so called IOPEs (inputs, outputs, precondi-
tions and effects of the service), is used. Inputs and outputs are usually described
in terms taken from a public ontology, while preconditions and effects are often ex-
pressed by means of logic representations. The WSMO model is slightly different:
here every service has also associated a logical formula, known as the goal of the
service, which is matched with the request during the search. The goal captures
the purposes of the service while the request represents the goal of the querier: the
selection is performed only when the two match. Moreover, recently an extension
of WSDL, called SAWSDL, that enables the use of semantic annotations has been
proposed [27]. As a difference with the previous proposals, SAWSDL allows to se-
mantically enrich only the definition of input and output parameters, by relating
them with ontological concepts.

Semantic annotation allows the discovery of services, whose descriptions do
not exactly match with the corresponding queries. Intuitively, they allow the re-
trieval of services, which have been developed for a (slightly) different purpose
but that can however be used for the aims of the current query. Therefore, these
techniques facilitate software reuse. So-called semantic matchmaking techniques
(e.g. [23, 18, 12]) mainly exploit forms of ontological reasoning. Many of these
proposals are inspired by the seminal work of Zaremski and Wing [32] for software
components match, who propose a formal specification to describe and compare
software components. They define various flavors of relaxed match, that capture
the notions of generalization, specialization, and substitutability; the best-known
of these relaxed matches is the plugin match. Specifications are given in terms
of pre- and post-conditions, written as predicates in first-order logic. Already in
this work, the goal was to identify software components that could be reused in a
context that was not the one for which they were originally developed.

Semantic matchmaking focuses on the discovery of single services, in the
sense that a service is considered as corresponding to a single operation. In general,
however, the use of a web service implies the execution of a sequence of operations
in a particular order, which might even involve other services [1]: for instance, the
clients of a supplier web service have to identify themselves, request item prices and
delivery time, and so on. In order for the interaction to be successful, the message
exchange must obey some constraints: if they are not satisfied the service will be
unable to process the messages and will return an error. To allow the interaction,
web services exhibit interfaces (port-types) which gather various operations that
are logically related. Moreover, it is possible to specify the order in which messages
are to be exchanged by means of languages like WSCI [29] and, at a lower level of
detail, WSDL message exchange patterns [30].

On the other hand, the need of describing compositions of services, which have
to interact according to (complex) patterns of interaction, ruled by conversation
protocols, has lead to the development of choreography languages like WS-CDL



Service selection by choreography-driven matching 7

[28]. WS-CDL is aimed at describing collaborations between any type of partici-
pant independently from the programming model used by its implementation. A
WS-CDL specification can be seen as a sort of contract, that specifies the order-
ing conditions and constraints that rule the message exchange. The description is
done from a global point of view, encompassing the expected behavior of all the
participants. Each participant is supposed to use the global definition to build and
test solutions that conform to it.

The task of selecting a web service, that should play a role in a choreography
(rather than using the choreography as the design of a new set of services), implies
verifying two things: the conformance of the service to the specification of a role of
interest, and that the use of that service allows the achievement of the goal, that
caused its search. Conformance guarantees the interoperability of the service with
the players of the other roles [25, 13, 10] by guaranteeing that the message exchange
will produce correct and accepted conversations. The goal that caused the search
of a service is a condition that should hold after the whole interaction has taken
place. It is not tied to the descriptions of some service operation but it is a global
condition that should hold in the final state, obtained after the conclusion of the
conversation/interaction. The achievement of the goal depends on the operation
sequence because each operation can influence the executability and the outcomes
of the subsequent ones. Therefore, the matchmaking process, that is applied to
discover services, should not only focus on local properties of the single operations,
e.g. IOPEs, but it should also consider the global schema of execution, which is
given by the choreography.

In [2] we have faced the conformance issue, proposing a conformance test that
is based on a variant of bisimulation. In this work, we focus on the second problem:
the selection of existing services that can play given choreography roles, preserving
a condition of interest. In particular, we show that performing a match operation by
operation, by applying the definitions in [32], does not preserve the global goal. We
also show how to overcome these limits by exploiting the choreography definition.
Actually, it is possible to extract from the choreography some information that can
be used to bias the matching process so that the global goal will be preserved. To
this aim, we exploit an action-based representation of the operations of a service:
each operation is described in terms of its preconditions and effects, as in [3],
without taking into account the ontology layer which is not functional to the
aims of the work. This representation supplies the mechanisms and the tools for
reasoning on compositions of services, as described in choreographies; in particular,
it supplies a representation of states and an execution model that can be reasoned
about.

The article is organized as follows. Section 2 introduces a simple representa-
tion for services, that is based on a declarative language, to abstract away from
the details of implementation. Section 3 reports the main results of the work: we
introduce the notions of conservative and of uninfluential substitution, and we
show that it is possible to exploit the choreography to select services in such a way
that a goal of interest is preserved. Throughout these sections we will use a same



8 Baldoni et al.

running example (introduced little by little), that is centered on the interaction
ruled by the simple purchase-flight protocol in Figure 1. Such protocol captures
the interaction between a flight ticket seller and one of its clients. In the various
sections we will see the how the protocol specification is given, in the declarative
language that we have adopted, as well as some implementations associated to spe-
cific services, discussing about them. Related works (Section 4) and conclusions
end the paper.

2. Using a declarative language to represent services

In this section, we briefly summarize the notation that we use to represent services,
introduced in [3], and we discuss the problem of verifying a global goal. The nota-
tion is based on a logical theory for reasoning about actions and change in a modal
logic programming setting. In this perspective, the problem of reasoning amounts
either to build or to traverse a sequence of transitions between states. A state is a
set of fluents, i.e., properties whose truth value can change over time, due to the
application of actions. In general, we cannot assume that the value of each fluent
in a state is known: we want to have both the possibility of representing unknown
fluents and the ability of reasoning about the execution of actions on incomplete
states. To explicitly represent unknown fluents, we use an epistemic operator B,
to represent the beliefs an entity has about the world: Bf means that the fluent f
is known to be true, B¬f means that the fluent f is known to be false. A fluent f
is undefined when both ¬Bf and ¬B¬f hold (¬Bf ∧¬B¬f). For expressing that
a fluent f is undefined, we write u(f). Thus each fluent in a state can have one of
the three values: true, false or unknown.

2.1. Service representation

A service description is defined as a triple 〈O,G,P〉, where O is a set of operations,
G is a set of actions that allow to receive messages, and P (policy) is a description
of the interactive behavior of the service. The name “policy” derives from the
literature concerning conversation protocols [15].

• The set O contains the descriptions of a set of service operations. An opera-
tion is an atomic action. As such, it is described in terms of its executability
preconditions and effects, the former being a set of fluents (introduced by the
keyword possible if) which must be contained in the service state in order forff
the operation to be applicable, the latter being a set of fluents (introduced by
the keyword causes) which will be added to the service state after the opera-
tion execution. Formalized in these terms, operations, when executed, trigger
a revision process on the actor’s beliefs. Since we describe web services from
a subjective point of view (i.e. taking the perspective of a specific service, by
representing and reasoning on the service policies), we distinguish between
the case when the service is either the initiator or the servant of an operation
by further decorating the operation name with a notation inspired by [7].



Service selection by choreography-driven matching 9

With reference to a specific service, operation�(interlocutor, content) de-
notes the fact that the service is the initiator of the operation (as in the case
of “solicit-response” interactions), while operation�(interlocutor, content)
denotes the fact that the service is the servant of the operation (as in the
case of “request-response” interactions). Formally, an operation is represented
as:

operation{� | �}(interlocutor, content) possible if {P1PP , . . . , PtPP }
operation{� | �}(interlocutor, content) causes {E1, . . . , En}

where Ei, i ∈ [1, n], and PjPP , j ∈ [1, t], denote respectively the fluents, which
are expected as effect of the execution of an operation and the precondition to
its execution, while content denotes possible additional data that is required
by the operation.

As an example, let’s consider search flight, an operation of a flight reser-
vation service, which is offered by a seller and can be invoked by a client to
search information about flights with given departure and arrival locations.
From the point of view of the client, the search flight is represented as:

search flight�(seller,Date, Start,Dest)
possible if {BStart,BDest,BDate}

search flight�(seller,Date, Start,Dest)
causes {Bwill get offer}

This notation captures the preconditions and the effects of the operation:
the precondition is that the departure location is known (BStart), that the
destination is known (BDest), and that the day of departure is also known
(BDate); the effect is that after the execution the invoker (the client) expects
that an offer will be sent (Bwill get offer). Instead, from the point of view
of the seller search flight is represented as:

search flight�(client,Date, Start,Dest) possible if {}
search flight�(client,Date, Start,Dest)

causes {Brequested flight(client,Date, Start,Dest)}
From the point of view of the seller, search flight is an operation to be offered
to its interlocutor (the client). Its execution causes to acquire knowledge
about the client’s flight request.

Last but not least, a service can also have internal operations, which
can be included in its policy but are not visible from outside. Each operation
is represented again as an atomic action, specified by its preconditions and
its effects. Formally, it is defined as:

operation(content) causes {E1, . . . , En}
operation(content) possible if {P1PP , . . . , PtPP }

where Ei, i ∈ [1, n], and PjPP , j ∈ [1, t], denote respectively the fluents, which
are expected as effect of the execution of an operation and the precondition to
its execution, while content denotes possible additional data that is required
by the operation. Notice that such operations can also be implemented as



10 Baldoni et al.

invocations to other services. As an example, here is the description of the
eval offer internal operation of a possible client for the flight-purchase inter-
action:

eval offer(Flight) possible if {Boffer(Flight)}
eval offer(Flight) causes {Beval rst(Flight, Y )}

eval offer applies when an offer for a flight is available and produces an eval-
uation that can be used for taking internal decision. The variable Y ranges
over the set {business, no business} depending on the kind of ticket that is
being considered.

• Besides operations, we explicitly represent actions that allow the reception of
information. We call them get-answer actions (set G). The range of possible
answers is supposed to be finite, in the sense that the interlocutor is supposed
to use a message out of a finite and predefined set of alternatives: if a different
message is sent the service is not able to handle it. We imagine the reception
of a piece of information as a “one-way” operation that is invoked over the
recipient. Actually, for technical reasons in our formalization, each possible
alternative answer corresponds to a different operation of this kind. Formally,
they are represented as:

receive act(interlocutor, content) receives I

where interlocutor is the partner in the interaction, content is used to store
the received message, and I is a set of alternative action invocations each
allowing the reception of one of the alternative messages. As an example
get answer allows the reception of either a not available� answer or of an
offer through the execution of one of the two actions not available� and
offer�. The decision of which of the two actions will be executed is up to
the interlocutor that decides which message to send.

get answer(Seller) receives
[not available�(Seller) or offer�(Seller, F light))]

In this example we do not use the content.
• P encodes the behavior for the service; it is a collection of clauses of the kind:

p0 is p1, . . . , pn

where p0 is the name of the procedure and pi, i = 1, . . . , n, is either an atomic
action (operation), a get-answer action, a test action (denoted by the symbol
?), or a procedure call. Procedures can be recursive and are executed in a
goal-directed way, similarly to standard logic programs, and their definitions
can be non-deterministic as in Prolog. As an instance, here we report the
booking procedure:

booking(Seller,Date, Start,Dest) is
search flight�(Seller,Date, Start,Dest), get answer(Seller),
Boffer (not avail)?

booking(Seller,Date, Start,Dest) is
search flight�(Seller,Date, Start,Dest), get answer(Seller),



Service selection by choreography-driven matching 11

Boffer (Flight)?, eval offer(Flight), finalize(Seller, F light)

It is defined by a set of two clauses, the former capturing the case when
the ticket is not available, the latter the normal situation when an offer for a
ticket is actually returned. In this case, the offer is evaluated and the purchase
is finalized by invoking another procedure.
A choreography is made of a set of interacting roles, a role being a subjective

view of the interaction that is encoded. When a service plays a role in a choreog-
raphy, its policy will contain some operations which are not of the service itself
but belong to some other role of the choreography, with which it interacts. In
other words, O can be partitioned in two sets: a set of bound operations and a set
of unbound operations, that must be supplied by some counterpart(s). Until the
counterpart(s) service is (are) not defined, such operations will be those specified
in the choreography. We assume that they are represented in a way that is homo-
geneous with the representation of operations, i.e. by means of preconditions and
effects. The binding will be possible only when the partner in the interaction will
be found. The fact that the former service is taking a given role in the choreogra-
phy is due, in our proposal, to the fact that it knows that a certain goal condition
will be true after the execution of the role. When a possible partner is identified for
the latter role, after the binding has taken place, it is necessary to check if the goal
condition is preserved. The reasons for which this could not happen are explained
in the following section; hereafter, we formalize the notion of substitution that we
interpret as the binding.

Let Sd = 〈O,G,P〉 a service description, and let Ou be a subset of O,
containing unbound operations that are to be supplied by a same counterpart Si.
Let OSi be the set of operations in Si that we want Sd to use, binding them to
Ou. We represent the binding by the substitution θ = [OSi/Ou] applied to Sd,
i.e.: Sdθ = 〈Oθ,Gθ,Pθ〉, where every element of Ou is substituted by/bound to
an element of OSi . Notice that not all elements of OSi are, instead, necessarily
bound. An example is reported in Example 3.

Example 1. Let us introduce, as an example, a simple choreography (see Figure 1)
that rules a flight reservation protocol, inspired to [24], with two roles: a Buyer and
a Seller. The buyer sends a request to search for flights, specifying the departure
location, the destination, and date. Depending on the seat availability, the seller
can either refuse the request, or send the information regarding a specific flight.
The buyer checks the offer, then, it either refuses (n ack) or accepts it (ack).
All the names on the arrows, e.g. searchFlight and offer, are specifications of the
operations that the players must provide and perform.

Let us consider a service b1 that is conformant to the role Buyer. Following
the proposed notation, we describe it as 〈O, G, P〉, where P = {booking, finalize},
O = {search flight�u, not available�, eval offer, offer�, ack�u, n ack�u}, G =
{get answer}. Intuitively, we assume that b1 already checked to be able to play
the buyer role, by proving that it owns both the internal (eval offer) required



12 Baldoni et al.

Figure 1. An example of a simple interaction protocol, for re-
serving a flight, expressed as a UML sequence diagram.

operations, and the ones foreseen by the protocol (ff not available�,offer�). The
checking can be performed by generalizing the approach in [4]. The procedures in
P are described by the following clauses:

booking(Seller,Date, Start,Dest) is
search flight�u(Seller,Date, Start,Dest), get answer(Seller),
Boffer (not avail)?

booking(Seller,Date, Start,Dest) is
search flight�u(Seller,Date, Start,Dest), get answer(Seller),
Boffer (Flight)?, eval offer(Flight), finalize(Seller, F light)

finalize(Seller, F light) is
Beval rst(Flight, business)?, ack�u(Seller, F light)

finalize(Seller, F light) is
Beval rst(Flight, no business)?, n ack�u(Seller, F light)

The only get message action in G is described by:
get answer(Seller) receives [not available�(Seller) or offer�(Seller, F light)]

Finally, the operations in O are described as:
eval offer(Flight) causes {Beval rst(Flight, Y )}
eval offer(Flight) possible if {Boffer(Flight)}

search flight�u(Seller,Date, Start,Dest) causes {Bwill get offer}
search flight�u(Seller,Date, Start,Dest) possible if {Bstart,Bdest,Bdate}

not available�(Seller) causes {Boffer(not available)}



Service selection by choreography-driven matching 13

not available�(Seller) possible if {}

offer�(Seller, F light) causes {Boffer(Flight)}
offer�(Seller, F light) possible if {}

ack�u(Seller, F light) causes {Bbooked(Flight)}
ack�u(Seller, F light) possible if {}

n ack�u(Seller, F light) causes {B¬booked(Flight)}
n ack�u(Seller, F light) possible if {}

where Y ranges on the set {business, no business}.
2.2. Reasoning on goals

In the outlined framework, it is possible to reason about goals by means of queries
of the form:

Fs after p

where Fs is the goal (represented as a conjunction of fluents), that we wish to
hold after the execution of a policy p. Checking if a formula of this kind holds
corresponds to answering the query: “Is it possible to execute p in such a way
that the condition Fs is true in the final state?”. When the answer is positive, the
reasoning process returns a sequence of atomic actions that allows the achievement
of the desired condition. This sequence corresponds to an execution trace of the
procedure and can be seen as a plan to bring about the goal Fs. Such a plan
can be conditional because whenever a get-answer action is involved, none of the
possible answers from the interlocutor can be excluded. In other words, the trace
will contain a different execution branch for every option.

This form of reasoning is known as temporal projection. Temporal projection
fits our needs because, as mentioned in the introduction, in order to perform the
selection we need a mechanism that verifies if a goal condition holds after the
interaction with the service has taken place. Fs is the set of facts that we would
like to hold “after” p.

Let Sd = 〈O,G,P〉 be a service description. The application of temporal
projection to P returns, if any, an execution trace, that makes a goal of interest
become true. Let us, then, consider a procedure p belonging to P, and denote by
G the query Fs after p. Given a state S0, containing all the fluents that we know
as being true in the beginning, we denote the fact that G is successful in Sd by:

(〈O,G,P〉, S0) � G

The execution of the above query returns as a side-effect an execution trace σ of p.
The execution trace σ can either be linear, i.e. a terminating sequence a1, . . . , an

of atomic actions, or it can contain branches, that are due, as we have mentioned,
to the presence of get-message actions.

Example 2 (Flight-purchase, second part). Let us suppose that the initial state of
the service b1 is S0 = {Bdate, Bstart, Bdest, Bsmoking flight}, (all the other



14 Baldoni et al.

fluents truth value is “unknown”). This means that b1 assumes a date, a departure
location, an arrival location and that on the flight it is allowed to smoke. The goal
of b1 is that the following condition holds:

G = {Bbooked(flight),Bsmoking flight} afterbooking(seller, date, start, dest)

Intuitively, the buyer expects that, after the interaction, it will have a reservation
on a smoking flight.

By reasoning on its policy and by using the definitions of the unbound oper-
ations that are given by the choreography, b1 can identify an execution trace, that
leads to a state where G holds:

σ = search flight�u(seller, date, start, dest); offer�(seller, f light);
eval offer(flight); ack�u(seller, f light)

This is possible because in a declarative representation specifications are exe-
cutable. Moreover notice that this execution does not influence the belief about
the smoking flight, which persists from the initial through the final state and is
not contradicted.

3. Goal-preserving match

When the matching process is applied for selecting a service that should play a role
in a (partially instantiated) choreography, the desire is that the substitution (of the
service operations to the specifications contained in the choreography) preserves
the properties of interest. Let us formalize this notion.

Definition 3.1 (Conservative substitution). Let us consider a service Si = 〈O, G,
P〉 which plays a role Ri in a given choreography, and a query G such that, given
an initial state S0,

(〈O,G,P〉, S0) � G w.a. σ

Consider a substitution θ = [OSj/O
σ
u(Rj)

], where Oσ
u(Rj)

= {ou ∈ O | o occurs
in σ} is the set of all unbound operations that refer to another role Rj , j �=�� i, of
the same choreography, that are used in the execution trace σ. θ is conservative
when the following holds:

(〈Oθ,Gθ,Pθ〉, S0) � G w.a. σθ

In the above definition, θ can be any kind of association between the oper-
ations of a service with the operations described in a choreography. In practice is
the result of a matching process. In the literature it is possible to find many match
algorithms, many of them (in the case of semantic web services) are grounded into
the work by Zaremski and Wing [32], mentioned in the introduction.

Zaremski and Wing propose a formal specification to describe the behavior of
software components, and to determine if two components match. Each software



Service selection by choreography-driven matching 15

Figure 2. The lattice of the different local matches: on top the strongest.

component has precondition Precs(s) and postcondition Effs(s). Their specifica-
tions are matched against a requirement, coherently specified as having precon-
dition Precs(r) and postcondition Effs(r). Five kinds of relaxed match between r
and s are defined, that we rephrase hereafter, to adapt them to our framework:

• EM (Exact Pre/Post Match): Precs(r) = Precs(s) ∧ Effs(r) = Effs(s)
• PIM (Plugin Match): Precs(r) ⊇ Precs(s) ∧ Effs(s) ⊇ Effs(r)
• POM (Plugin Post Match): Effs(s) ⊇ Effs(r)
• GPIM (Guarded Plugin Match): Precs(r) ⊇ Precs(s) ∧ ((Precs(s) ∪ Effs(s)) ⊇

Effs(r))
• GPOM (Guarded Post Match): ((Precs(s) ∪ Effs(s)) ⊇ Effs(r))

Exact pre/post match states the equivalence of r and s. Plugin match is weaker: s
must only be behaviorally equivalent to r when plugged-in to replace r. Plugin post
match relaxes the former: only the postcondition is considered. Guarded matches
focus on guaranteeing that the desired postcondition holds when the precondi-
tion of s holds, not necessarily in general. The different matches can be organized
according to a lattice [32], that we have reported in Fig. 2. For short, we will respec-
tively denote by θEM , θPIM , θPOM , θGPIM , θGPOM , the substitutions obtained
by applying the five degrees of match.

It is immediate to see that any substitution, obtained by applying the exact
pre/post match, satisfies Definition 3.1. However, this is not true for the other
kinds of match. Let us show this with the help of a simple example.

Example 3. The buyer service b1 (see previous examples) is looking for another
service, which can play the role of the Seller, to reserve a flight seat. This service
must provide a set of operations that will substitute the unbound operations of



16 Baldoni et al.

the buyer role. Let us choose the plugin match as matching rule. Let us consider
the candidate s1, a service that is conformant to the protocol w.r.t. the role Seller.
The set of operations of the seller represented in the knowledge base of the buyer
includes the following definition for operation search flight�:

search flight�(Seller,Date, Start,Dest)
possible if {Bstart, Bdest, Bdate}

search flight�(Seller,Date, Start,Dest)
causes {Bwill get offer , B¬smoking flight}

while all the other operations are defined exactly as in Example 1.
By applying the plugin match, we obtain the substitution θPIM , which in-

cludes, among the others, also [search flight�/search flight�u]
1. By applying the

substitution θPIM we obtain the set of policies PθPIM :
booking(Seller,Date, Start,Dest) is

search flight�(Seller,Date, Start,Dest), get answer(Seller),
Boffer(not avail)?

booking(Seller,Date, Start,Dest) is
search flight�(Seller,Date, Start,Dest), get answer(Seller),
Boffer(Flight)?; eval offer(Flight); finalize(Seller, F light)

finalize(Seller, F light) is
Beval rst(Flight, business)?; ack�(Seller, F light)

finalize(Seller, F light) is
Beval rst(Flight, no business)?; n ack�(Seller, F light)

By using this policy, the query (〈OθPIM , GθPIM ,C,PθPIM 〉, S0) � G fails: in fact,
the additional effect B¬smoking flight of the service search flight� prevents the
buyer to achieve a part of its goal, i.e. to book a smoking flight.

Theorem 3.2. The class of PIM, POM, GPIM and GPOM substitutions are not
conservative.

Proof. The proof is given by the counterexample in Example 3. In fact, θ, besides
being a PIM substitution, is also an instance of all the other kinds of substitution
that we have listed, i.e. it is also a POM, a GPIM, and a GPOM substitution. �

In order for a substitution to be conservative, it must take into account also
the overall structure, encoded by the choreography. The locality of the matches
used in the matchmaking phase, indeed, seriously limits the possibility of re-using
services by selecting and composing them in an automatic way.

In the remainder of this section, we focus on the plug-in match. The plugin
match is one of the most used matches and it immediately follows the exact match
in the lattice (it is the strongest of the flexible matches). We show how to enrich it
so to allow the construction of conservative substitutions. To this aim, we take into

1For the sake of brevity, we omit to specify the substitutions when the operations exactly match
the specifications.



Service selection by choreography-driven matching 17

account the dependencies between actions, which produce as effects fluents, that
are used as preconditions by subsequent action. Intuitively, the idea is to verify
that the “causal chain” which allows the execution of the sequence of actions,
is not broken by the differences between capabilities/services and requirements,
as instead happens in the example. The obvious hypothesis is that we have a
choreography and that we know that it allows to achieve the goal of interest, i.e.
that there is an execution σ of the role specification, which allows the achievement
of the goal. We will use this trace for defining the additional properties for the
match.

Let us start by introducing the notions that define dependencies between
actions and dependency sets for fluents. Consider a service description S = 〈O,G,
P〉, and suppose that, given the initial state S0, the goal G = Fs after p
succeeds, thus obtaining as answer the successful sequence of actions σ = a1; a2;
. . . ; an, which is an execution trace of p.2 We denote by σ the sequence of actions
a0; a1; a2; . . . ; an; an+1, where a0 and an+1 are two fictitious actions that will be
used respectively to represent the initial state S0 and the set of fluents Fs, which
must hold after σ. That is, we assume a0 has no precondition and Effs(a0) = S0,
and that an+1 has no effect but Precs(an+1) = Fs.

Consider two indexes i and j, such that j < i, i, j = 0, . . . , n + 1. We say
that in σ the action ai depends on aj for the fluent Bl, written aj �〈Bl,σ〉 ai,
iff Bl ∈ Effs(aj), Bl ∈ Precs(ai), and there is not a k, j < k < i, such that
Bl ∈ Effs(ak). Given a fluent Bl and a sequence of actions σ, we can, therefore,
define the dependency set of Bl as Deps(Bl, σ) = {(j, i) | aj �〈Bl,σ〉 ai}.

Let [s/ou] be a specific substitution of a service operation s to an unbound
operation ou, that is contained in θPIM , we say that a fluent Bl ∈ Effs(s)−Effs(ou)
(i.e. an additional effect of s w.r.t. the effects of ou) is an uninfluential fluent
w.r.t. the sequence σθPIM iff for all pairs (j, i) ∈ Deps(B¬l, σ), identifying by
k the position of ou in σ, we have that k < j or i ≤ k, Intuitively, this means
that the fluent will not break any dependency between the actions which involve
the inverse fluent because either it will be overwritten or it will appear after its
inverse has already been used. Note that σ and σθPIM have the same length and
are identical as sequences of actions but for the fact that in the latter the selected
service operations substitute unbound operations. For this reason, we can reduce
to reasoning on σ for what concerns the action positions.

A substitution θPIM is called uninfluential iff for any substitution [s/ou] in
θPIM , all beliefs in Effs(s)−Effs(ou) are uninfluential fluents w.r.t. σ. Now we are
in position to prove that a substitution which exploits the plugin match and which
is also uninfluential, is conservative.

Theorem 3.3. Let us consider a service Si = 〈O, G, P〉 which plays a role Ri in
a given choreography, and a query G such that, given an initial state S0,

(〈O,G,P〉, S0) � G w.a. σ

2In the following we focus on linear plans. Conditional plans can be tackled by considering each
path separately.



18 Baldoni et al.

Consider an uninfluential substitution θPIM = [OSj/O
σ
u(Rj)

], where Oσ
u(Rj)

=
{ou ∈ O | o occurs in σ} is the set of all unbound operations that refer to another
role Rj, j �=�� i, of the same choreography, that are used in the execution trace σ.
Then, the following holds:

(〈OθPIM ,GθPIM ,PθPIM 〉, S0) � G w.a. σθPIM

Proof. The proof is by absurd and it uses the proof theory introduced in [6]. Let
us assume that (〈O,G,P〉, S0) � G w.a. σ but (〈OθPIM ,GθPIM ,PθPIM 〉, S0) ��
G w.a. σθPIM . Since, by hypothesis, for any substitution [o/ou] in θPIM , Effs(o) ⊆
Effs(ou) holds, there exists a fluent F such that a0, a1, . . . , ai−1 � F but (a0, a1, . . . ,
ai−1)θPIM �� F , where σ = a0, a1, . . . , ai−1, ai, . . . , an and F ∈ Precs(ai). Now,
since a0, a1, . . . , ai−1 � F , there exists j ≤ i − 1, such that a0, a1, . . . , aj � F
and F ∈ Effs(aj) but (a0, a1, . . . , aj)θPIM �� F , that is F �∈ Effs(ajθPIM ). This is
absurd due to the hypothesis that θPIM is an uninfluential substitution. �

Example 4. Let us now consider the goal and the service description specified in
Example 1, and let us also consider an interlocutor s2, that is conformant to the
role Seller. For what concerns the operation ack�u and n ack�u, the service s2
offers descriptions that exactly match the specification in Example 1. Instead for
what concerns search flight�u, it offers the following description:

search flight�(Seller,Date, Start,Dest)
possible if {Bstart, Bdest, Bdate}

search flight�(Seller,Date, Start,Dest)
causes {Bwill get offer , Bveg meals}

Differently than in case of s1, this service does not compromise the achievement of
the goal, even though it provides some additional information (Bveg meals). This
information is not used in the interaction that we are considering but we must
take into account the fact that s2 might be conformant also to other protocols,
in which this information is relevant. It is realistic that the service will not be
re-implemented each time if not strictly necessary.

The verification that a substitution is uninfluential involves the derivation σ,
and it is based on checking whether the chains of dependencies between actions
for the various fluents are not interrupted by some opposite fluent. Obviously, if
the domain is such that no fluent, once asserted, can be negated, any θPIM will
be conservative. This can be verified statically on the choreography and the set of
unbound operations, by checking that every fluent (that appears as effect of some
action) is always positive or negative, including the initial state and the goal in the
verification. Indeed, the application domains in which actions produce knowledge
are of this kind.



Service selection by choreography-driven matching 19

4. Conclusion and related works

In this work we have studied the relation between the matchmaking rules and the
achievement of a goal in a choreography, within the process of selecting a service
for playing a role. We have shown that, when the adoption of a role is due to
the desire of reaching a goal, the matches performed on single operations (but
the exact match) are not adequate and it is necessary to introduce a verification
that takes into account the context given by the choreography. Afterwards, we
have presented an extension of the plugin match that takes into account also the
choreography. To the best of our knowledge, the selection of a service based on a
kind of match that takes into account context of application of the sought services
(i.e. the choreography in which it will be immersed) has not been yet tackled in
the literature, with the only exception of the work by Biswas [8]. Biswas proposes
to enrich service descriptions with constraints, i.e. conditions that hold during
the execution of the service. Given a specification of a desired composed service,
in BPEL or in OWL-S, a discovery process is enacted to identify the services
to assemble. The constraints associated to them are used to build the overall
constraints of the composition, which is then checked against the constraints given
by the user, to see if the composition satisfies the user’s needs. This is a bottom-
up approach, aimed at verifying some properties of the composition which are not
captured by the IOPE analysis.

The literature related to matchmaking is wide and it is really difficult to
be exhaustive. The matches proposed in [32] have inspired most of the semantic
matches for web service discovery. Amongst them, Paolucci et al. [23] propose four
degrees of match (exact, plugin, subsumes, and fail) that are computed on the
ontological relations of the outputs of an advertisement for a service and a query.
This approach tackles DAML-S representations, in which services are described
by means of inputs and outputs. This approach is refined in [18], a work that
describes a service matchmaking prototype, which uses a DAML-S based ontology
and a Description Logic reasoner to compare ontology-based service descriptions,
given in terms of input and output parameters. The matchmaking process, like
in [23], produces a discrete scale of degrees of match (Exact, PlugIn, Subsume,
Intersection, Disjoint).

WSMO (Web Service Modeling Ontology) [12] is an organizational framework
for semantic web services. As such, it does not suggest a specific matching rule,
which is up to the specific implementations. However, the authors propose in [17]
an approach that is based on [32] and on [18]. More recently, a WSMO matchmaker
has been proposed in [16], which combines several aspects: type matching, rela-
tion matching, constraint matching, parameter matching, intentional matching.
Last but not least, in [20] a multi-level evaluation model is proposed, for deciding
whether two services are composable. This is done through four levels of control
(quality, dynamic semantics, static semantics, and syntax). Dynamic semantics is
the name given to the matches of [32].



20 Baldoni et al.

The idea of synthesizing a policy from an abstract specification is also stated
in [11], where it is observed that services are often conceived so as to be delivered
individually, while there is a growing need of reusing this software, either by com-
posing services or by tailoring a composition to some specific client. This direction
has been suggested in [21], where a UML specification of a business process was
used to abstract the description of a composition away from the specification of
the composed services. This abstract specification defines a model, used for driving
the retrieval and the composition task.

Works like [24, 9] propose approaches for goal-driven service composition
based on planning. However, the task is accomplished without reference to any
choreography. In particular, in [24] the composition and the semantic reasoning
phases (carried on on inputs and outputs) are separated and the latter is performed
on a local basis only. In [14, 19] web services are composed by composing their
interaction protocols in a social framework, by means of a temporal logic.

The next step of this research will be to test the presented method, by im-
plementing it in a real system and applying it to real cases. In particular, we are
exploring the possibility to design a choreography-driven matchmaking framework
by relying on existing description languages, such as OWL-S, for what concerns
the semantic service representation, and WS-CDL+C [5] for what concerns the
choreography specification. Moreover, so far we have not yet tackled the integra-
tion of ontological reasoning in our work. This is surely an interesting extension
that we will face soon; actually, many proposals for semantic matchmaking base
upon the same relaxed match that we have used, and we expect similar results.

Acknowledgment

This research has partially been funded by the European Commission and by
the Swiss Federal Office for Education and Science within the 6th FP project
REWERSE number 506779 (cf. http://rewerse.net), and by MIUR PRIN 2005
“Specification and verification of agent interaction protocols” national project.
Claudio Schifanella is partially supported by the fellowship program “Fondazione
CRT - Progetto Lagrange” (cf. http://www.progettolagrange.it).

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services Concepts, Archi-
tectures and Applications. Springer-Verlag, Berlin, 2004.

[2] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. A priori conformance verification
for guaranteeing interoperability in open environments. In Proc. of the 5th Interna-
tional Conference on Service Oriented Computing (ICSOC 2006), volume 4294 of
LNCS, pages 339–351. Springer, 2006.

[3] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about interaction
protocols for customizing web service selection and composition. J. of Logic and
Algebraic Programming, 70(1):53–73, 2007.



Service selection by choreography-driven matching 21

[4] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Goal preservation
by choreography-driven matchmaking. In Proc. of the Third International Workshop
on Engineering Service-Oriented Applications: Analysis, Design and Composition,
WESOA 2007, in conjunction with ICSOC 2007, pages 77–88, Vienna, Austria, Sep-77
tember 2007.

[5] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Reasoning on
choreographies and capability requirements. International Journal of Business Pro-
cess Integration and Management, IJBPIM, 2007.MM

[6] M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Programming Rational Agents
in a Modal Action Logic. Annals of Mathematics and Artificial Intelligence, Special
issue on Logic-Based Agent Implementation, 41(2-4):207–257, 2004.

[7] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Synthesis
of Underspecified Composite e-Service bases on Atomated Reasoning. In Proc. of
ICSOC04, 2nd International Conference on Service Oriented Computing, pages 105–
114, 2004.

[8] D. Biswas. Web services discovery and constraints composition. In Proc. of the 1st
Int. Conf. on Web Reasoning and Rule Systems, RR 2007, volume 4524 of77 LNCS,
pages 73–87. Springer, 2007.

[9] J. Bryson, D. Martin, S. McIlraith, and L. A. Stein. Agent-based composite ser-
vices in DAML-S: The behavior-oriented design of an intelligent semantic web. In
Agent-Based Composite Services in DAML-S: The Behavior-Oriented Design of an
Intelligent Semantic Web, Web Intelligence. Springer-Verlag, 2002.

[10] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and
orchestration: A synergic approach for system design. In Proc. of 4th International
Conference on Service Oriented Computing (ICSOC 2005), volume 3826 of LNCS,
pages 228–240. Springer, 2005.

[11] F. Casati and M. C. Chien. Dynamic and adaptive composition of e-services. Infor-
mation Systems, 26:143–163, 2001.

[12] D. Fensel, H. Lausen, J. de Bruijn, M. Stollberg, D. Roman, and A. Polleres. Enabling
Semantic Web Services : The Web Service Modeling Ontology. Springer, 2007.

[13] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based analysis of obligations
in web service choreography. In Proc. of IEEE International Conference on Inter-
net&Web Applications and Services 2006, 2006.

[14] L. Giordano and A. Martelli. Web Service Composition in a Temporal Action Logic.
In Proc. of 4th Int. Work. on AI for Service Composition, 2006.

[15] M. P. Huget and J.L. Koning. Interaction Protocol Engineering. In H.P. Huget,
editor, Communication in Multiagent Systems, volume 2650 of LNAI, pages 179–II
193. Springer, 2003.

[16] F. Kaufer and M. Klusch. WSMO-MX: A logic programming based hybrid service
matchmaker. In ECOWS ’06: Proc. of the European Conference on Web Services,
pages 161–170, Washington, DC, USA, 2006. IEEE Computer Society.

[17] U. Keller, R. Laraand A. Polleres, I. Toma, M. Kifer, and D. Fensel. D5.1 v0.1
WSMO web service discovery. Technical report, WSML deliverable, 2004. Available
at http://www.wsmo.org/TR/d5/d5.1/v0.1/.



22 Baldoni et al.

[18] Lei Li and Ian Horrocks. A software framework for matchmaking based on semantic
web technology. In WWW ’03: Proceedings of the 12th international conference on
World Wide Web, pages 331–339, New York, NY, USA, 2003. ACM.

[19] A. Martelli and L. Giordano. Reasoning About Web Services in a Temporal Action
Logic. In Reasoning, Action and Interaction in AI Theories and System, number
4155 in LNAI, pages 229–246. Springer, 2006.

[20] B. Medjahed and A. Bouguettaya. A multilevel composability model for semantic
web services. IEEE Trans. on Knowledge and Data Engineering, 17(7):954–968, 2005.

[21] B. Örrens, J. Yang, and M.P. Papazoglou. Model driven service composition. In
ICSOC 2003, Proceedings of the First International Conference on Service-Oriented
Computing, 2003, volume 2910 of LNCS, pages 75–90. Springer, 2003.

[22] OWL-S Coalition. http://www.daml.org/services/owl-s/.

[23] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. Semantic matching of
web services capabilities. In Proc. of ISWC’02, pages 333–347. Springer, 2002.

[24] M. Pistore, L. Spalazzi, and P. Traverso. A minimalist approach to semantic annota-
tions for web processes compositions. In The Semantic Web: Research and Applica-
tions, 3rd European Semantic Web Conference, ESWC 2006, June, 2006, Proceed-
ings, volume 4011 of LNCS, pages 620–634. Springer, 2006.

[25] S. K. Rajamani and J. Rehof. Conformance checking for models of asynchronous
message passing software. In Proc. of 14th International Conference on Computer
Aided Verification, CAV 2002, volume 2404 of LNCS, pages 166–179. Springer, 2002.

[26] UDDI, Universal Description, Discovery and Integration. http://www.uddi.org/.

[27] W3C. Semantic Annotations for WSDL Working Group.
http://www.w3.org/2002/ws/sawsdl/.

[28] WS-CDL. http://www.w3.org/tr/ws-cdl-10/.

[29] WSCI, Web Service Choreography Interface. http://www.w3.org/tr/wsci.

[30] WSDL Message Exchange Patterns. http://www.w3.org/tr/2004/wd-wsdl20-
patterns-20040326/.

[31] WSDL, Web Service Description Language. http://www.w3.org/tr/wsdl.

[32] A. Moormann Zaremski and J. M. Wing. Specification matching of software compo-
nents. ACM Trans. on Software Engineering and Methodology, 6(4):333–369, 1997.

Matteo Baldoni, Cristina Baroglio, Alberto Martelli,
Viviana Patti, and Claudio Schifanella
Dipartimento di Informatica
Universita degli Studi di Torino`
C.so Svizzera, 185
I-10149 Torino (Italy)
e-mail: {baldoni,baroglio,mrt,patti,schi}@di.unito.it



Whitestein Series in Software Agent Technologies, 23–39
©c 2008 Birkhauser Verlag Basel/Switzerland¨

Enabling Business Experts to Discover Web
Services for Business Process Automation

Sebastian Stein, Katja Barchewitz and Marwane El Kharbili

Abstract. Using Web services for business process automation is an accepted
approach in context of service-oriented architectures (SOA). Business process
models are created by business experts usually not having an IT background
and who are therefore not able to use the technical descriptions available for
web services. In this paper, we show how we extended the market leading
business process management suite ARIS to enable business experts to dis-
cover, assess, and select Web services for business process automation. We
developed a structural and a semantic matching algorithm as well as a graph-
ical user interface for Web service assessment. We use a schema to classify
Web service discovery literature and we relate our work to it. Our completely
integrated discovery tool helps bridging the gap between business and IT,
because business experts can now discover Web services needed for business
process automation on their own.

Keywords. web service discovery, bpm, aris.

1. Introduction

A company is driven by its business processes and their interfaces to the outside
world. Those business processes are documented using business process notations
like Event-driven Process Chains (EPC) [1]. Such process models are used on
different abstraction levels, for example to specify how a business activity should
run in general but also how a certain sub-process should be implemented using
information systems. It is the grand vision of business process management (BPM)
[2] to directly derive the process implementation from the business process models
created by business experts.

In past years, the idea of service-oriented architectures (SOA) [3] became a
popular approach for integrating information systems to support business process
automation. SOA itself is just an architectural style, but not a specific technology.



24 Stein, Barchewitz and El Kharbili

There seems to be a preliminary consensus in enterprise computing that Web ser-
vice technology [4, see e. g.] is the preferred SOA implementation solution. Steps in
a business process are automated by Web services and the business process mod-
els are afterwards transformed into process execution languages like the Business
Process Execution Language (BPEL) [5].

Using Web services for business process automation has a major drawback:
Business processes are described by business experts, whereas Web services are
described on a technical level. The technical Web service description is not us-
able for business experts and therefore they are not able to select a web service
to automate a certain step in a business process. To overcome this problem, we
developed a tool and method allowing business experts to discover Web services
for process automation. The discovery tool is completely integrated in the world
market leading1 software for business process analysis and management ARIS 2

and the belonging ARIS methodology [8] for business process management.
This article is structured as follows. In the next section we provide a detailed

literature review of Web service discovery algorithms. Based on existing literature,
we develop a classification for Web service discovery approaches. In section 3 we
present our solution. First, we discuss in sub-section 3.1 the general structure of
our solution and how our solution can be classified according to the classification
schema developed. In sub-sections 3.2 and 3.3 we describe how Web services and
data structures are represented in ARIS. This information is important in order
to understand the description of the two matching algorithms. Our structural
matching algorithm for Web service discovery is explained in sub-section 3.4. Our
semantic matching algorithm for Web service discovery is explained in sub-section
3.5. In sub-section 3.6 we present the graphical user interface we developed to allow
business experts to assess the matching results and to make an informed decision
of the Web service to be used. In section 4 we give an example to better illustrate
our solution. Finally, we present our conclusions at the end of the article.

2. Literature Review and Theoretical Foundation

We investigated service discovery literature. Even though we were not able to
identify any specific publication dealing with Web service discovery for business
process automation, we found many publications related to web service discovery
in various domains. For example, many publications are targeting Web service
discovery in context of Grid computing [9]. Here, services are bound during ex-
ecution often based on quality of service (QoS) parameters. A related domain is
agent systems [10, see e. g.] trying to identify a communication partner with a set
of defined capabilities. Other publications deal with identifying Web services in
context of software engineering. The idea is to construct complex (software) sys-
tems by combining basic Web services. Public market places are created so that

1. . . according to Gartner [6] and Forrester [7] market research reports. . .
2http://www.aris.com/



Web Service Discovery for BPM 25

service providers can advertise their offerings and service consumers can evaluate
and bind them. Today, public standards for such service registries are available like
UDDI [11] and ebXML Registry Information Model [12], even though we cannot
confirm a quick adoption of those standards in industry.

The idea of offering well encapsulated functionality to an anonymous mar-
ket is not new. During the early 1990s the idea of component-oriented software
engineering [13, see e. g.] became popular and here again it was the idea to reuse
existing software components to construct more complex applications. However,
there was no agreed standard for describing and binding the components and so
their application was always limited to users with the same technology platform.

It can be said that Web service technology resolves this major interoperability
issue by defining the WSDL [14] and SOAP [15] standards. The Web Service
Description Language (WSDL) is used to define the interface of a Web service
as well as where the Web service can be reached in terms of a unique resource
identifier. SOAP defines a standard protocol to access the remote resource.

Web service discovery aims at identifying a Web service able to fulfil the
requirements defined by the Web service request. We were able to identify three
basic approaches to Web service discovery:

1. Structural discovery approaches use syntactical information available like the
interface description and the definition of the data messages exchanged be-
tween the communication partners. This kind of matching is very technical, as
it requires the service requester to specify structural requirements like a cer-
tain operation signature or data type. A typical example of such a discovery
approach is given by Ramasamy [16]. Ramasamy compares operation names
and operation parameters to the service request to discover Web services.

2. Lexical discovery approaches use natural language descriptions. For exam-
ple, Web service operation names usually contain some terms describing
their functionality. Also, WSDL and other standards allow embedding nat-
ural language descriptions. The lexical algorithms remove stop words from
those descriptions, find synonyms using lexical databases like WordNet [17]
and compute similarity coefficients. For example, Zhuang et al. [18] present
an algorithm to compute the similarity of two web services. Their approach
uses the information given in the WSDL files and does not require any ad-
ditional annotations. They do manual pre-processing of the WSDL files to
remove abbreviations, but it should be possible to use lexical databases like
WordNet to automate this task in the future.

3. Semantic descriptions often based on ontologies are another major approach
for Web service discovery. They use formal methods to describe web service
capabilities and properties so that machine reasoning can be used to identify
possible candidates for a service request. There are competing formalisms for
describing this semantic information like the Web Service Modeling Ontology
(WSMO) [19] or OWL-S [20]. A standard called WSDL-S [21] was proposed
which provides some extensions for WSDL so that semantic descriptions in



26 Stein, Barchewitz and El Kharbili

any formalism can be referenced from a WSDL file and so semantic annota-
tion of existing Web services becomes possible. An early example for semantic
matching is Paolucci et al. [22]. They use DAML-S to describe the capabili-
ties of a web service as well as the service request. In a more recent example
Kritikos and Plexousakis [23] describe quality of service (QoS) parameters
using OWL-S allowing matching on non-functional Web service properties.

Most discovery algorithms combine different approaches to achieve a better
result. For example, Wang and Stroulia [24] combine structural and lexical analysis.
Kokash et al. [25, p. 526] have identified several strategies how to combine the
results of different discovery approaches.

• The mixed strategy uses different discovery approaches and matching algo-
rithms in parallel and unites the returned result sets into one final result set.
Normally, duplicates are removed from the final result set.

• The cascading strategy applies different discovery approaches and match-
ing algorithms in sequence. A matching is only performed on the result set
returned by the previous algorithm. This helps to reduce the amount of pro-
cessing needed and it can increase the overall result quality. This can be seen
as a stepwise refinement.

• The switching strategy selects between different discovery strategies and
matching algorithms based on predefined criteria. For example, if the results
returned by an algorithm are not satisfactory, another algorithm is used. The
cascading and switching strategy can be combined to create more complex
strategies.

Our experience and literature investigation show that there is another im-
portant characteristic to correctly classify Web service discovery approaches and
matching algorithms. One has to distinguish between discovery during design time
and run-time. The former is normally initiated by a user designing a web service
composition for example to create a custom software application or to automate a
business process. This is also sometimes referred to as early binding. The latter is
used during execution of a service composition. In this case, the composition only
contains a requirements definition for a service call but it does not specify which
specific Web service to use. At run-time, discovery is done to find all Web services
matching the requirements specification and the best fitting Web service is used.
This is sometimes referred to as late binding.

According to Kokash et al. [25, p. 522]St Web service discovery consists of
three major phases, also illustrated in figure 1:

1. During the matching phase matching algorithms belonging to the different
discovery approaches are applied. The results are combined according to the
chosen strategy. The result set might just consist of all Web services matching
the request or they might be ranked according to their fitness.

2. During the assessment phase the matching results are further refined by a set
of criteria. Where matching is normally done automatically, the assessment is



Web Service Discovery for BPM 27

Matching Phase Assessment
Phase

Selection Phase

Service
Request

All Web
Services

Matching
Web

Services

Criteria
Set

Assess-
ed Web
Service

Selected
Web

Service

Figure 1. Major Phases of Web Service Discovery

often done manually, especially if Web service discovery is done during design
time.

3. In the final selection phase a Web service is chosen and used in the compo-
sition as intended. This might also mean to adapt either the web service or
the consuming process or application.
In this section, we provided an overview of current Web service discovery

approaches and how to classify them. In the following section we show how our
work relates to and extends existing approaches for Web service discovery.

3. Our Approach to Web Service Discovery

3.1. Overview

In theory it might be possible to discover a Web service during run-time to auto-
mate a certain step in a business process. Still, we have not seen something like
that nor did our customers asked for it. They carefully design their processes and
select Web services during design time. Therefore, our approach focuses on Web
service discovery during design time.

We do not use any algorithms for lexical matching of Web services, even
though the user can refine the matching results during the assessment phase using
ordinary string search. In contrast, we make heavy use of structural matching to
identify Web services able to handle the data objects modelled in the business
process. We compare the business objects given in the business process to the
message types used by the Web service in the message exchange. In that sense our
matching algorithm is very similar to what Ramasamy [16] describes. We also do a
lightweight variant of semantic matching. The users of our tool are able to create
a taxonomy and use this taxonomy to classify the functionality of Web services.
Even though we are not using ontologies or reasoning algorithms, it is still a way
of capturing semantics.

We use the mixed strategy to unite the results of structural and semantic
matching. We consider a Web service to fulfil the service request, if it is either dis-
covered by structural or semantic matching or by both approaches. We remove any
duplicates from the final result set before it is presented to the user for assessment.



28 Stein, Barchewitz and El Kharbili

We have structured the Web service discovery tool according to the three
phases of service discovery. The user initiates Web service discovery by selecting
the business process step to be automated. During the first phase, we analyse
the context of the selected business process step and derive the service request.
All Web services available in our tool are matched against the service request.
Afterwards, the result set is presented to the user for assessment. Finally, the user
selects the Web service to use and the Web service is automatically added to the
business process.

The following sub-sections describe our solution in detail. We do not describe
the user roles involved using this solution to make the description not too com-
plicated. An example is given in section 4. This example provides a walk-through
also describing the involved user roles.

3.2. Web Service Representation in ARIS SOA Architect

The ARIS Platform is a set of integrated products to manage all aspects of an en-
terprise model. Besides defining and documenting a business strategy and business
processes, one important aspect of an enterprise is the supporting IT infrastruc-
ture. Today, many companies are migrating their IT infrastructure to service-
oriented architectures. A common piece in such an architecture are web services.
Therefore, the specific SOA related ARIS product called ARIS SOA Architect
allows importing Web services, if they are described using the Web Service De-
scription Language (WSDL) version 1.1. Instead of just dumping the file in the
underlying database, we extract the content and represent it using the Unified
Modelling Language (UML). For example, WSDL porttypes are mapped to UML
interfaces and the belonging operations to UML operations. The WSDL import
functionality of ARIS SOA Architect also allows importing embedded or referenced
XML schema definitions. Those definitions are mapped to UML as well.

Using UML models to visualise the information contained in a WSDL file is a
proven approach for technical oriented users, but it is insufficient for business users.
Therefore, we also create an object representing the web service from a business
perspective. This object has no technical information like operations, interfaces
or technical message types, because a business user should not have to deal with
this kind of information in order to use a web service. Instead, the Web service
is described from a business perspective by adding tags to it. The tag concept is
described in detail in section 3.5. Other information includes the hardware the
Web service is running on, the application system the Web service belongs to, and
the person responsible for the Web service. The user can also evaluate, who or
which process is currently using the Web service and the company locations the
Web service is available for.

3.3. Information Architecture and Business Objects in ARIS SOA Architect

As described in the previous sub-section, technical data structures like XML
schema definitions are mapped to UML models. However, for a business user it
is not useful to deal with such a detailed data model. For example, there might



Web Service Discovery for BPM 29

Business 
Activity

Business 
Object

Business 
Object

Business
Object

Business
Object

…… ……

Input Output

Customer
B.O.

xsd:String

Abstract

Data TypeDD
(XSD)

TTrraavveerrssee MMaappppiinngg Message
Type

Message
Type

Message
Type

Message
Type

O
P Operation 

Pa
Operation 
Par Operation 

Parameter

Match message types withMatch message types with
operation parametersoperation parameters

(Input/Output)(Input/Output)

Extract matching operation for Extract matching operation for
each matched parametereach matched parameter

(Input/Output)(Input/Output)

Operation
Operation

Operation
Operation

Get owning serviceGet owning service
for each operationfor each operation

1

2
3

45

Address
B.O.

OutputInput

Serv
Service

Output

Serv
Service

InputServ
Service

Matching
Set

Compute intersection of matched Compute intersection of matched
input and output servicesinput and output services

6

Figure 2. Structural Web Service Matching Algorithm

be different technical message types or database schemas to represent customer
data, but from a business perspective there is only one customer data object. Such
data objects are often called business objects or logical data objects. As in case of
technical data modelling, business objects are also further refined into more con-
crete parts. For example, the business object customer can be decomposed into
the name, address, payment history, and an interest profile. The models describing
all relevant business objects for the whole enterprise are called information archi-
tecture. An internationally operating company should only have one information
architecture, but there are usually several implementation of this architecture.

Message types defined by Web services are an implementation of business
objects, too. A business user is using business objects to specify the data flow
in a business process. If the technical data objects defined by the web services
are mapped to the business objects used by the business user, it is possible to
discover Web services for business process automation. The underlying algorithm
is explained in detail in the following sub-section.

3.4. Structural Matching Algorithm

Web services use message types to define their input and output. On the other
hand, a business process uses business objects to describe the data flow. Both con-
cepts are not equivalent, because they are on completely different abstraction levels
as explained in the previous section. Instead of using message types in business



30 Stein, Barchewitz and El Kharbili

processes to model the data flow, one should create a mapping between business
objects and message types. This mapping can be used to discover Web services by
navigating from the business objects over the message types to the belonging Web
services.

Our structural matching algorithm works as follows: We first extract all busi-
ness objects modelled as input and output of the business process step as illustrated
in step 1 in figure 2. Afterwards, we have two sets, one containing all business ob-
jects required as input and the other one containing all business objects required as
output. For each of those business object sets we navigate through the mapping to
identify all message types. Implementing this navigation is not trivial, because the
modelling capabilities of the ARIS suite allows as many abstraction levels between
business object and message type as the user wants including cyclic dependencies.
Optimisation techniques must be used to implement a high performing solution.
For example, the business object customer used in a business process is further
decomposed into an address. This address can be represented using different mes-
sage types. The algorithm has to identify all message types mapped to the business
object. This is illustrated between steps 1 and 2 in figure 2. After this step, we
have two sets of message types, one for message types required as input and one for
message types required as output. In step 3 we check to which operation param-
eters those message types belong and if the parameters have the same direction
as the message types (input or output). Extracting this information is possible,
because we map the complete content of the WSDL file and related XSD files to
UML models as described in section 3.2 and 3.3. If the message type is an opera-
tion parameter with the correct direction, we extract the belonging operation as
shown in step 4. Afterwards, the operation’s owning Web service is extracted in
step 5. At the end we have two sets of Web services: one set supporting all input
business objects and the other set containing all web services supporting the out-
put business objects. In the final step 6 both result sets are intersected. The final
result set of the structural matching algorithm contains only those Web services,
which are part of both preliminary result sets and are therefore able to support
all input as well as all output business objects.

As one can see, we do not check that a Web service has at least one single op-
eration able to support all business objects in the parameter list. While automating
business processes, this is normally not a problem, because during transformation
of a business process into an executable process model (like BPEL), a process step
can be split up into several technical steps. Also, adding another operation to a
Web service able to handle all business objects in one request is often possible, if
the Web service is owned by the company.

The biggest disadvantage of the structural matching algorithm is the effort
required for mapping business objects to technical data structures. Many of our
customers have already created a comprehensive information architecture consist-
ing of the most important business objects, but matching those business objects to



Web Service Discovery for BPM 31

technical data structures requires effort. Each customer must decide, if this invest-
ment can be justified. As an alternative, we provide a more lightweight matching
algorithm, which is described in the following sub-section.

3.5. Semantic Matching Algorithm

Not all customers are interested in creating and managing an information archi-
tecture. Therefore, we provide a second more lightweight approach for web service
discovery. First, the user creates a taxonomy for functional descriptions. Each
taxonomy object has a very short textual description, comparable to a tag. In
addition, a more detailed description including texts and diagrams can be added
so that the meaning of the tag can be illustrated for human users.

The taxonomy is used to annotate Web services by assigning the tags to
them. Tags should be shared between Web services, if Web services have similar
properties or functional capabilities. For example, the tag web interface should be
added to all Web services providing a web based user interface.

The taxonomy must be carefully designed and managed. For example, not
every user should be able to extend the taxonomy by creating new tags. Instead,
reuse of existing tags must be enforced. Tags must also be described in a way thatTT
users have a clear understanding of their meaning.

The taxonomy is also used during business process modelling to express what
kind of functionality is needed to automate a business process step. Tags are
assigned to a business process step for this purpose.

The semantic matching algorithm first extracts all tags assigned to the busi-
ness process step to be automated. The extracted tags describe the service re-
quest. Afterwards, we extract the tags assigned to each Web service and compare
this list to the service request. This way we can discover those web services able
to support the service request. This algorithm is much simpler compared to the
structural matching algorithm. For example, the algorithm does not support de-
composition of tags, so a Web service will not be discovered, if it has only a more
general tag assigned as specified in the service request. We do not see this as a
drawback, because this discovery algorithm is meant to be lightweight and easy to
understand.

3.6. Web Service Assessment and Refinement

The final result set consists of all Web services discovered either by the structural
matching algorithm or by the semantic matching algorithm. The matching results
are shown to the user in a graphical user interface. A screenshot can be seen
in figure 3. The screen design consists of three parts, which are marked in the
screenshot with the numbers 1–3.

During the assessment phase the user further refines the result set. For ex-
ample, the user can search the descriptions and names of the Web services with a
string search or he can filter the list of Web services according to their namespace.
He can also filter the list according to the date the web services were imported



32 Stein, Barchewitz and El Kharbili

Figure 3. Graphical User Interface of the Web Service Discovery
Tool in ARIS SOA Architect

into ARIS. Those refinement settings are done in part 1 of the screen design as
shown in figure 3.

The current result set can be seen in part 2 of the screen design. This part also
allows switching between a list of all Web services and the list with matching Web
services. This is useful in case the matching algorithms did not return a satisfying
discovery result.

The user has to assess if a Web service fulfils the service request. This assess-
ment cannot be done based on the name of a Web service. Therefore, additional
information is shown in part 3 of the screen design for the currently selected Web
service. For example, all business objects supported by the Web service are shown



Web Service Discovery for BPM 33

«interface»

«wsdlPortType»

http://car-rental.com/webservice::carRentalPT

«wsdlOperation» +checkAvailabilityOp(in inputPara: availabilityMsg, out outputPara: availabilityMsg)

«wsdlOperation» +rentCarOp(in inputPara: rentalMsg, out outputPara: rentalMsg)

«reside»«reside»

«wsdlService»

http://car-rental.com/webservice::CarRentalService

Figure 4. Web Service as UML Component Diagram

as well as the textual description. It is also possible to see in which other contexts
the Web service is used.

Finally, the user selects a Web service and confirms this selection. The dialog
closes and the Web service is automatically attached to the business process step.
Now that a Web service is assigned to the business process step, this process step
is automated from a design point of view. If all steps in a business process are
supported by Web services, the model can be transformed to BPEL as we have
shown in [26].

4. Example

This section provides an example to better illustrate our discovery approach. The
example mentions two different roles – a business analyst and an IT architect.
The business analyst has no IT background, but instead experience in business
process modelling. The IT architect has SOA know-how and is able to use typical
SOA middleware products and standards. In reality, there are usually more roles
involved, but we tried to make the example not too complicated.

A fictitious company defines an internal business process for organising busi-
ness trips. If such a business trip has to be done by car, the employee has to use
a company car, if available. Only if no company car is available, the employee is
allowed to rent a car from a defined car rental company.

The car rental company provides a Web service for this purpose. In order
to be able to use this Web service in business process modelling, the Web service
must be made available in ARIS. An IT architect imports the Web service. The
content of the WSDL file is visualised as an UML component diagram as shown
in figure 4.

Besides using this technical information, the IT architect annotates the web
service with tags from the company wide taxonomy to describe the service seman-
tically. The company wide taxonomy is defined prior and will not be changed by
the IT architect. In addition, the IT architect might add who is responsible for



34 Stein, Barchewitz and El Kharbili

encompasses

Service

CarRental
Service

Web Interface

Travel
Management

Booking

Fleet
Management

describes

Partner
Manager

owns

Figure 5. Annotated Web Service

this Web service. Figure 5 shows the annotated web service. There are four tags
describing the Web service and an owner is defined, as well.

If the company has an information architecture, the IT architect maps the
message types used by the Web service to the belonging business objects. This can
be a complex task and he might have to consult business analysts to identify the
correct business objects. The mapping is done in different diagrams, which are not
shown.

A business analyst models the business process described at the beginning
of this section. Figure 6 shows a small part of the business process. The business
analyst creates a business function and connects it with the input and output
business objects. In addition, the business expert specifies requirements by relat-
ing the business function to tags from the company wide taxonomy. In reality,
companies have either an information architecture or a company wide taxonomy,
but not both.

The business analyst wants to automate the business function using a web
service. He selects the business function and starts the integrated discovery tool.
The discovery tool evaluates the content of the business process by extracting
all input and output business objects and extracting the tags connected to the
business function. This information is the input for the semantic and structural
matching algorithms as described in section 3. The results are shown to the busi-
ness analyst in the graphical user interface discussed in section 3.6 and shown in
figure 3. The business analyst selects a Web service after assessing the different
choices. The Web service is automatically added to the business process as shown
in figure 7. The symbol of the business function is changed as well to visualise that
this process step is now automated by a Web service.



Web Service Discovery for BPM 35

No Company Car
Available

Rent a Car Car Rented

Web Interface Travel
Management

requires

Car Rental
Contract

is input for

has output of

Figure 6. Business Process without Web Service

No Company Car
Available

SYS

Rent a Car Car Rented

Web Interface Travel
Management

requires

Car Rental
Contract

is input for

has output of

Service

supports

Figure 7. Business Process with Web Service

The resulting business process cannot be executed directly, because different
technical information is missing. An IT analyst uses our EPC to BPEL transfor-
mation [26] to generate a corresponding BPEL model. This BPEL model must be
further refined, for example selecting correct Web service operations or defining
technical exception handling.

The example given in this section shows that a business analyst is able to
automate business processes by discovering matching Web services. In order to
select a Web service the business analyst does not need IT knowledge. On the other
hand, an IT expert implementing a business process gets a detailed specification
for his work.



36 Stein, Barchewitz and El Kharbili

5. Conclusions

In this article we presented a Web service discovery tool for business process au-
tomation. The tool is completely integrated in the world market leading tool for
business process management ARIS and the belonging ARIS method. In contrast
to other publications, our approach clearly separates between the different ab-
straction levels by not mixing technical data with technology independent business
processes. The Web service discovery tool is structured around the three discov-
ery phases: matching, assessment, and selection. The intended audience are non
technical users like business analysts. The tool does not confront them with unnec-
essary technical details. The matching algorithms used discover a set of matching
services. The result set can be assessed and refined by the user or the user can
switch to a list with all available Web services if needed. For each Web service
we provide additional information so that the user can make an informed decision
while selecting a Web service.

In order to discover Web services, we use a structural matching algorithm and
a semantic matching algorithm. In both cases, the service request is extracted from
the business process model. No user input is required for defining the service re-
quest, which simplifies the overall tool usage. The structural matching algorithm
identifies all Web services able to support the business objects modelled at the
business process step to be automated. This is possible based on a mapping of
Web service message types to business objects. The semantic matching algorithm
requires that Web services and the business process step are tagged using a taxon-
omy. A Web service is considered to match semantically, if it has at least all tags
also attached to the business process step.

So far, the tool was already deployed by several customers. Many technical
oriented users were fascinated by the structural matching algorithm, but it seems
that business oriented users like the semantic matching algorithm more. However,
at the current point we have not received enough feedback from the field to make
any final judgement. We already initiated a survey among the first users, but the
results are not available yet.

Even though our customers perceive our current solution for Web service
discovery as good, there is still room for improvements. For example, the structural
matching algorithm does not scale very well, because we are not able to use any
optimisation techniques like pre-indexing or caching. This is not a problem inherent
in our algorithms, but related to the technological framework we have to use.
It is our challenge for the next months to find optimisation tricks to overcome
those problems. Another point of improvement is to allow a more sophisticated
semantic matching. For example, it should be possible to create a tag hierarchy
so that Web services are discovered, even if a more general tag was assigned to
them. Also, it should be possible to express that two tags cannot be used together,
because they contradict each other. However, we do not intend to provide complete
ontology modelling and matching possibilities in the near future, because the tool
must be easy and intuitive to use even without any special training. We also plan



Web Service Discovery for BPM 37

to extend our web service discovery concept to a more general service discovery
concept. Basically, the service concept can be used to describe any kind of business
function. We will broaden the definition of the service concept so that it better
aligns with the service concept as defined in OASIS’ SOA Reference Model [3]. For
example, a service must not be implemented using software at all. We will extend
our discovery approach to cover such business services as well.

Our most important contribution is to bring Web service discovery to a non-
technical audience. Web service discovery can now be done by business analysts.
Even though there is still room for improvements, we are confident that our tool
helps bridging the gap between business and IT.

6. Acknowledgement

A first prototype of the discovery tool was partly funded by the German fed-
eral ministry of education and research within the public research project OrViA
(http://www.orvia.de/). The literature review as well as preparing this paper was
supported by the EU Commission within the integrated research project SUPER
(http://www.ip-super.org/). We like to thank the German federal ministry of ed-
ucation and research and the EU Commission for this opportunity!

References

[1] Scheer, A.W., Thomas, O., Adam, O.: Process modelling using event-driven process
chains. In Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., eds.: Process-
Aware Information Systems. Wiley, Hoboken, New Jersey, USA (2005) 119–146

[2] Smith, H., Fingar, P.: Business Process Management: The Third Wave. 1st edn.
Meghan-Kiffer Press, Tampa, FL, USA (2003)

[3] MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R.: Reference
model for service oriented architecture 1.0. Technical report, OASIS (July 2006)
http://www.oasis-open.org/committees/download.php/19361/soa-rm-cs.pdf.

[4] McGovern, J., Sims, O., Jain, A., Little, M.: Enterprise Service Oriented Architec-
tures. Springer, Dordrecht, The Netherlands (2006)

[5] Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M.,
Goland, Y., Guizar, A., Kartha, N., Liu, C.K., Khalaf, R., König, D., Marin, M.,¨
Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web services business
process execution language (bpel) version 2.0. Technical report, OASIS (April 2007)

[6] Blechar, M.: Magic quadrant for business process analysis market, 2h07. Technical
report, Gartner (June 2007)

[7] Peyret, H.: The forrester wave: Enterprise architecture tools, q2. Technical report,
Forrester (April 2007)

[8] Scheer, A.W.: ARIS - Business Process Frameworks. 3rd edn. Springer, Berlin, Ger-
many (1999)



38 Stein, Barchewitz and El Kharbili

[9] Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. International Journal of High Performance Computing Appli-
cations 15(3) (2001) 200–223

[10] Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intel-
ligence. MIT Press (1999)

[11] Clement, L., Hately, A., von Riegen, C., Rogers, T.: Uddi version 3.0.2. Technical
report, OASIS (October 2004) http://www.oasis-open.org/committees/uddi-spec/.

[12] Fuger, S., Najmi, F., Stojanovic, N.: ebxml registry information model version 3.0.
Technical report, OASIS (May 2005) http://docs.oasis-open.org/regrep-rim/v3.0/.

[13] Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley (1997)

[14] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web service de-
scription language (wsdl) 1.1. Technical report, W3 Consortium (March 2001)
http://www.w3.org/TR/wsdl.

[15] Mitra, N., Lafon, Y.: Soap version 1.2. Technical report, W3 Consortium (April 2007)
http://www.w3.org/TR/soap.

[16] Ramasamy, V.: Syntactical & semantical web services discovery and composition.
In: The 8th IEEE International Conference on E-Commerce Technology and the
3rd IEEE International Conference on Enterprise Computing, E-Commerce, and E-
Services (CEC/EEE’06). (2006)

[17] Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)

[18] Zhuang, Z., Mitra, P., Jaiswal, A.: Corpus-based web services matchmaking. In:
Workshop on Exploring Planning and Scheduling for Web Services, Grid and Auto-
nomic Computing, held in conjunction with The Twentieth National Conference on
Artificial Intelligence (AAAI ’05), Pittsburgh, PA, USA (July 2005)

[19] Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D.,
Domingue, J.: Enabling Semantic Web Services: The Web Service Modeling On-
tology. Springer (2006)

[20] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N.,
Sycara, K.: Owl-s: Semantic markup for web services. Technical report (2004)
http://www.daml.org/services/owl-s/.

[21] Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.T., Sheth, A., Verma,
K.: Web service semantics (wsdl-s) version 1.0. Technical report, W3 Consortium
(November 2005) http://www.w3.org/Submission/WSDL-S/.

[22] Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web ser-
vices capabilities. In: The Semantic Web - ISWC 2002: First International Semantic
Web Conference. LNCS 2342/2002, Sardinia, Italy, Springer, Germany (June 2002)

[23] Kritikos, K., Plexousakis, D.: Semantic qos metric matching. In: 4th European Con-
ference on Web Services (ECOWS). (December 2006) 265–274

[24] Wang, Y., Stroulia, E.: Flexible interface matching for web-service discovery. In: Web
Information Systems Engineering (WISE). Proceedings of the Fourth International
Conference on. (2003) 147–156



Web Service Discovery for BPM 39

[25] Kokash, N., van den Heuvel, W.J., D’Andrea, V.: Leveraging web services discov-
ery with customizable hybrid matching. In Dan, A., Lamersdorf, W., eds.: Service-
Oriented Computing (ICSOC 2006). Proceedings of the Fourth International Con-
ference on. LNCS 4294, Berlin, Germany, Springer (2006) 522–528

[26] Stein, S., Ivanov, K.: EPK nach BPEL Transformation als Voraussetzung für praktis-f¨f
che Umsetzung einer SOA. In Bleek, W.G., Raasch, J., Züllighoven, H., eds.: Software¨
Engineering 2007. Volume 105 of Lecture Notes in Informatics (LNI)., Hamburg,
Germany, Gesellschaft fur Informatik (GI) (March 2007) 75–80f¨f

Sebastian Stein
IDS Scheer AG
ARIS Research
Altenkesseler Str. 17
66115 Saarbrücken¨
Germany
e-mail: sebastian.stein@ids-scheer.com

Katja Barchewitz
IDS Scheer AG
Altenkesseler Str. 17
66115 Saarbrücken¨
Germany
e-mail: katja.barchewitz@ids-scheer.com

Marwane El Kharbili
IDS Scheer AG
ARIS Research
Altenkesseler Str. 17
66115 Saarbrücken¨
Germany
e-mail: marwane.elkharbili@ids-scheer.com



Whitestein Series in Software Agent Technologies, 41–58
©c 2008 Birkhauser Verlag Basel/Switzerland¨

Evaluation of Semantic Service Discovery -
A Survey and Directions for Future Research

Ulrich Küster, Holger Lausen and Birgitta K¨¨ onig-Ries¨

Abstract. In recent years a huge amount of effort and money has been in-
vested in the area of semantic service discovery and presented approaches
have become more sophisticated and mature. Nevertheless surprisingly little
effort is being put into the evaluation of these approaches. We argue that the
lack of established and theoretically well-founded methodologies and test beds
for comparative evaluation of semantic service discovery is a major blocker of
the advancement of the field. To lay the ground for a comprehensive treat-
ment of this problem we discuss the applicability of well-known evaluation
methodologies from information retrieval and provide an exhaustive survey of
the current evaluation approaches.

Keywords. semantic web services, service discovery, evaluation.

1. Introduction

In recent years semantic services research has emerged as an application of the
ideas of the semantic web to the service oriented computing paradigm. Semantic
web services (SWS in the following) have received a significant amount of attention
and research spending since their beginnings roughly six years ago [8]. Within the
sixth EU framework program1 (which ran from 2002 to 2006) alone at least 20
projects with a combined funding of more than 70 million Euro deal directly with
semantic services which gives a good impression of the importance being currently
put on this field of research. In the following we will focus on efforts in the field
of SWS discovery and matchmaking. We refer to discovery as the whole process
of retrieving services that are able to fulfill a need of a client and to matchmaking
as the problem to automatically match semantically annotated service offers with
a semantically described service request. However, we think that our findings also
apply to other related areas, like automated semantic service composition.

1http://cordis.europa.eu/fp6/projects.htm



42 Kuster, Lausen and K¨¨ onig-Ries¨

In this paper we argue that despite of the huge amount of effort (and money)
spent into SWS discovery research and despite the fact that the presented ap-
proaches become more sophisticated and mature, much too little effort is put into
the evaluation of the various approaches. Even though a variety of different service
matchmakers have been proposed we did not suceed to find any publications with
a thorough, systematic, objective and well designed evaluation of those matchmak-
ers. This corresponds to a trend that seems to exist in computer science in general.
In [14] Tichy et. al. find that computer scientists publish relatively few papers with
experimentally validated results compared to other sciences. In a follow-up work
[13] Tichy claims that this trend is harmful for the progress of the science. There
are positive examples that back his claim:

”[in the experiments] . . . there have been two missing elements. First
[. . . ] there has been no concerted effort by groups to work with the
same data, use the same evaluation techniques, and generally compare
results across systems. The importance of this is not to show any system
to be superior, but to allow comparison across a very wide variety of
techniques, much wider than only one research group would tackle.
[. . . ] The second missing element, which has become critical [. . . ] is the
lack of a realistically-sized test collection. Evaluation using the small
collections currently available may not reflect performance of systems
in large [. . . ] and certainly does not demonstrate any proven abilities
of these systems to operate in real-world [. . . ] environments. This is
a major barrier to the transfer of these laboratory systems into the
commercial world.”

This quote by Donna Harman [5] addressed the situation in text retrieval research
prior to the establishment of the series of TREC conferences2 in 1992 but seems
to perfectly describe the current situation in SWS discovery research. Harman
continued:

”The overall goal of the Text REtrieval Conference (TREC) was to
address these two missing elements. It is hoped that by providing a very
large test collection, and encouraging interaction with other groups in
a friendly evaluation forum, a new thrust in information retrieval will
occur.”

From the perspective of today, it is clear that her hope regarding the positive
influence of the availability of mature evaluation methods to the progress of infor-
mation retrieval research was well justified. In this paper we argue that a similar
effort for SWS related research is necessary today for the advancement of this field.

The rest of this paper is organized as follows. In Section 2 we will review the
philosophy of information retrieval evaluation and argue that traditional evaluation
methods can not be applied easily to the domain of SWS matchmaking. In Section
3 we provide an extensive survey of current evaluation efforts in the area of SWS
discovery. We cover the related work in Section 4, draw conclusions about what

2http://trec.nist.gov/



Evaluation of Semantic Service Discovery 43

is missing so far and provide directions for future work in Section 5 and finally
summarize in Section 6.

2. The Philosophy of Information Retrieval Evaluation

In a broader context, discovery of semantic web services can be seen as a special
information retrieval (IR) problem. According to Voorhees [17], IR evaluation has
been dominated for four decades by the Cranfield paradigm which is characterized
by the following properties:

• An IR system is mainly evaluated by means of recall and precision.
• Recall is defined as the proportion of retrieved documents that are relevant.
• Precision is defined as the proportion of relevant documents that are re-
trieved.

• Relevance is based on topical similarity as obtained from the judgements of
domain experts.

• Test collections therefore have three components: a set of documents (the test
data), a set of information needs (topics or queries) and a set of relevance
judgements (list of documents which should be retrieved)

Vorhees identifies several assumptions on which the Cranfield paradigm is based
that are unrealistic in most cases. She concludes that experiments based on those
assumptions are a noisy process but is able to provide evidence that – despite of the
noise – such experiments yield useful results, as long as they are only used to assess
the relative performance of different systems evaluated by the same experiment.

Since the experiments based on the Cranfield paradigm are extremely well
established, since the methodology of these experiments is well understood and
since SWS matchmaking is a special information retrieval problem, it seems ob-
vious to try to apply the same methods and measures to the SWS matchmaking
domain. However, in the following we argue that this is not a promising approach
for various reasons.

A model of the general process of information retrieval is depicted in Figure 1.
The user has a real world need (like information about a certain topic) that needs
to be satisfied with the existing real world supply (like a collection of documents).
Both the need and the supply are abstracted to a model. In the case of web search
engines for instance, such a model will consist of descriptors extracted from the
query string and data structures like indexes built upon descriptors extracted from
the web pages etc. The information retrieval system then operates on that model
to match the need with the supply and returns the (real world) results. As a
matter of fact the power of this model (how well it captures the real world and
how well it supports the retrieval, i.e. matchmaking and ranking process) is of
critical importance for the retrieval system and thus a central component of its
overall performance.

Traditional information retrieval systems typically create the model they op-
erate on in an autonomous fashion. Thus, from the viewpoint of an evaluation



44 Kuster, Lausen and K¨¨ onig-Ries¨

Figure 1. The process of information retrieval

they operate on the original data. Consequently, completely different IR systems
can be evaluated on a common test data set (like a collection of documents).

SWS matchmaking follows a different paradigm. Here the semantic annota-
tion is the model that is exploited during the matchmaking and it is not created
automatically, but written by human experts. Currently there is no agreed upon
formalism used for the semantic annotations, but competing and mostly incom-
patible formalisms are in use (like WSMO3, OWL-S4, WSDL-S5, DSD6, . . . ).

To apply the Cranfield paradigm to the evaluation of SWS discovery, one
could provide a test collection of services in a particular formalism (e.g. OWL-S)
and limit participation in the experiment to systems based on that formalism.
This is the approach of the current S3 Matchmaker Contest (Section 3.1). Un-
fortunately, this excludes the majority of systems from participation. But there
is an even more severe issue. Virtually all semantic matchmaking systems that
are based on some form of logical reasoning operate deterministically. Therefore
the question whether a semantic offer description matches a semantic request de-
scription in the same formalism can usually be decided unambiguously yielding
perfect recall and precision (only depending on the definition of match). The task
to evaluate, however, is the retrieval of real-world services that match a real-world
request. Thus, the major source of differentiation between various approaches is

3http://www.wsmo.org/
4http://www.daml.org/services/owl-s/
5http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/
6http://hnsp.inf-bb.uni-jena.de/DIANE/



Evaluation of Semantic Service Discovery 45

the expressivity of the employed formalism and reasoning. The critical questions
here are:

• How precisely can a description based on a particular formalism reflect the
real-world semantics of a given service (offer or request)?

• How much of the information contained in the descriptions of a service can
a matchmaker use efficiently and effectively to decide whether two services
match?

Note that the first question usually calls for more expressive formalisms whereas
the second one requires less expressive formalisms to keep the reasoning tractable.

As argued above, the formalism employed for the semantic annotation of the
services, i.e. the model used for the matchmaking, is of crucial importance for the
overall performance of the discovery system. Consequently, a good evaluation of
SWS discovery should measure not only the performance of a system for a given
formalism, but also evaluate the pros and cons of that formalism itself. In fact, as
long as there is no common understanding about the pros and cons of different
formalisms and no agreement about which formalism to employ for a given task,
evaluation of SWS discovery should first and foremost help to establish this missing
common understanding and agreement.

The approach outlined above, however, neglects the influence of the model
used in the matchmaking process and therefore does not measure the performance
of that part of the retrieval process, which has the largest influence to the overall
performance of the system.

A different approach that overcomes this limitation would be to provide a
test collection of services in any format (e.g. human language) and let the partic-
ipants annotate the services manually with their particular formalism. This is the
approach taken by the SWS-Challenge (Section 3.2) and the DIANE evaluation
(Section 3.3)). Unfortunately there are problems with this proceeding, too. First,
such an experiment can hardly be performed on a large test collection, since the
effort for the participants to manually translate the services into their particu-
lar formalisms is enormous. Yet, the unavoidable noise of experiments based on
the Cranfield paradigm precisely requires large test collections to yield stable re-
sults [17]. Second, due to the human involvement, such an experiment can not be
conducted in an automated way. Even worse, such an experiment does not only
measure the performance of the matchmaking formalism and system, but also the
abilities of the experts that create the semantic annotations. This introduces a
whole new dimension of noise to the evaluation.

For the reasons given above we conclude that the experimental setup and the
evaluation measures and methods developed for traditional information retrieval
do not transfer directly to the SWS discovery domain. The influence of the de-
scribed problems needs to be explored and new methods and measures have to
be developed where necessary. To lay the foundation for this task, we provide an
extensive survey of the current efforts in SWS discovery evaluation in the following
section.



46 Kuster, Lausen and K¨¨ onig-Ries¨

3. A Survey Of Current Approaches in Semantic Web Service
Discovery Evaluation

3.1. S3 Matchmaker Contest

Klusch et al. have recently announced an annual international contest S3 on Se-
mantic Service Selection7 whose first edition will be held in conjunction with the
upcoming International Semantic Web Conference in Busan, Korea (November
2007). We would like to express our acknowledgement and appreciation of this
new effort that we welcome very much. Despite of that we identify some problems
in the current setup of the contest.

The contest is based on a test collection of OWL-S services and ”evaluation
of semantic web service matchmakers will base on classic performance metrics
recall/precision, F1, average query response time”7. As argued in the previous
section this style of application of the Cranfield paradigm to the SWS matchmaking
domain has a limited scope and significance since it does not allow a comparative
evaluation of different semantic formalisms.

We furthermore think there is currently a problematic flaw in the practical
setup of the contest, too. The most severe achilles’ heel of any such contest is
the dependency on a good SWS test collection. This year the S3 contest will rely
solely upon the OWL-S Test Collection 28 which we believe to be unsuitable for
a meaningful comparative and objective SWS matchmaking evaluation. We will
explain our skepticism by a critical review of the collection.

The OWL-S Test Collection 29 is the only publicly available test collection of
semantically annotated services of mentionable size. It has been developed within
the SCALLOPS project10 at the German Research Centre for Artificial Intelligence
(DFKI). The most recent version 2.1 of the collection (OWLS-TC2 released in
October 2006) contains 582 semantic web services written in OWLS 1.1. To put our
following criticism into the correct light and in acknowledgement that currently
no better public standard test collection exists, we would like to mention that
the OWLS-TC2 does not claim to be more than ”one possible starting point for
any activity towards achieving such a standard collection by the community as a
whole”[6]. Our criticism of OWLS-TC2 covers three aspects.

Use of realistic real-world examples. One common criticism to many use cases and
evaluations in the service matchmaking domain is the use of artificial toy examples
which are far from realistic applications. Even though examples do not necessarily
have to be realistic to test features of a matchmaking system, the use of real-
world examples clearly minimizes the danger of failing to detect lacking features

7http://www-ags.dfki.uni-sb.de/∼klusch/s3/
8It is planned to extend the scope of the contest beyond OWL-S based matchmakers in the
future. However, public test collections based on other formalisms have unfortunately not been
developed so far. The S3 contest organizers have set up a public wiki (http://www-ags.dfki.uni-
sb.de/swstc-wiki) to initiate efforts in this direction.
9http://projects.semwebcentral.org/projects/owls-tc
10http://www-ags.dfki.uni-sb.de/∼klusch/scallops/



Evaluation of Semantic Service Discovery 47

or awkward modeling. Furthermore, toy examples far from real-world applications
critically hinder the acceptance of new technology by industry. OWLS-TC2 claims
that ”the majority of [. . . ] services were retrieved from public IBM UDDI registries,
and semi-automatically transformed from WSDL to OWL-S”[6]. Thus, one would
expect somewhat realistic services but a substantial share of the 582 services of
OWLS-TC2 seems quite artificial and idiosyncratic. Oftentimes the semantic of the
service is incomprehensible even for a human expert and unfortunately only six of
the original WSDL files are included in the test set download. A comprehensive
coverage is impossible due to the size of OWLS-TC2 but the following examples
illustrate the issues (in the following service names always refer to the name of
the corresponding service description file, not the service name from the service’s
profile, quotes are from the service’s description file or the OWLS-TC2 manual):

• Some services are simply erranous, quite a few services for instance are pair-
wise identical except for the informal textual description (e.g.ff
price CannonCameraservice.owls and price Fishservice.owlsF )

• The service destination MyOfficeservice.owlsM is supposed to ”return
destination of my office”, but takes concepts of type organization and surfing
(which is a subclass of sports) as input.

• The service surfing farmland service.owls is described as ”This is the
recommended service to know about the farmland for surfing” and has an
input of type surfing and an output of type farmland. What’s the semantic
of this service?

• The service qualitymaxprice cola service.owls ”provides a cola for the
maximum price and quality. The quality is an optional input.” It is described
by its inputs of type maxprice and quality and an output of type cola. There
are a whole lot of similar services that return cola (six more services), beer
+ cola, coffee + whiskey (eleven services), cola-beer, cola + bread or biscuit
(two services), drinks (three services), liquid, whiskey + cola-beer as well as
irish coffee + cola. It remains unclear what is the semantics of these services.

Besides these issues we believe that examples from domains like funding of bal-
listic missiles, which the typical user of an evaluation system does not have any
experience with, make a realistic evaluation unnecessary difficult.

Semantic richness of descriptions. Services should not only be realistic and real-
istically complex, they also should be described in sufficient detail to allow for
meaningful semantic discovery. After all there should be an advantage to use se-
mantic annotations compared to simply using traditional information retrieval
techniques. Unfortunately the services of OWLS-TC2 are described extremely su-
perficial. First of all it seems that all services are solely described by their inputs
and outputs. What is the semantic of a service (car price service.owls) that
takes a concept of type Car as input and has a concept of type Price as output?
It might sell you a car and tell you the price afterwards, it might just as well only
inform you about the price of a new car or the price of a used car. It might rent
a car for the returned price. It might tell you the price of the yearly inspection



48 Kuster, Lausen and K¨¨ onig-Ries¨

for the given car. There are many different possible interpretations. What is the
semantic of a service like car priceautop service.owls that takes as input a con-
cept of type Car and has outputs of type Price and Auto (which is a subclass of
car)?

In our view the services of OWLS-TC2 are not described in sufficient de-
tail to allow to perform meaningful semantic discovery on them. The problem is
greatly aggravated by the fact that the services in OWLS-TC2 make use of classes
in a class hierarchy but do not make use of attributes or relations. Thus, in most
cases the semantic of the services is greatly underspecified and - if at all - un-
derstandable only from the informal textual documentation11. Overall it seems
the textual descriptions of the service offers and queries are not captured well byffff
the semantic descriptions. Query 23 for instance is informally described as ”the
client wants to travel from Frankfurt to Berlin, that’s why it puts a request to
find a map to locate a route from Frankfurt to Berlin.” This request is described
(geographicalregiongeographical-region mapm service.owls) as a request for
a service with two unordered inputs of type geographical region and a single output
of type map. Clearly routing services will also be found (among many others) by
such a request, but we are afraid that offers and requests described at this level of
detail will neither allow to demonstrate the added value of semantic service dis-
covery nor to evaluate the power of matchmakers which should create this added
value.

Independence of offer and request descriptions. Ideally, service offer and request
descriptions should be designed independently since this is the envisioned situation
in reality. Service providers describe their offers, clients query for a service with a
semantic request description and a matchmaker is supposed to find the offers that
match the request. We acknowledge that in laboratory settings it is sometimes
desirable to artificially design the offers to match a request at various degrees.
This way it can be assured that all potentially existing degrees of match occur
during a test run. However, a test where the offers have been designed to match
a request at hand with specific degrees runs the risk of doing nothing more than
supporting the belief that a particular matchmaker implementation operates as
expected. It does not demonstrate the power of a certain semantic description
formalism or a certain matchmaking approach. Despite the fact that OWLS-TC2
claims that most services where retrieved from public IBM UDDI registries, we got
the impression that for most of the queries in OWLS-TC2 the matching services
have been artificially designed for that particular query. Query 4 for instance asks
for the combined price of a car and a bicycle. It seems quite idiosyncratic to buy
a car and a bicycle as a package, yet there are at least eleven service offers in
OWLS-TC2 that precisely offer to provide the price of a package of one car and

11This may have been on purpose since the OWL-MX matchmaker, the matchmaker OWLS-TC
was designed for, is a hybrid matchmaker that combines semantic matchmaking with traditional
information retrieval techniques



Evaluation of Semantic Service Discovery 49

one bicycle. Our impression is further backed up by the fact that the number of
relevant services is quite stable for all the queries.

Conclusions. OWLS-TC2 has been developed by the effort of a single group to
evaluate a particular (hybrid) matchmaker [7] and the OWLS-TC2 manual states
that it has been designed to be balanced with respect to the matching filters of
that matchmaker, i.e. besides performing semantic discovery it explicitly also uses
classical Information Retrieval techniques. Thus OWLS-TC2 is suited to test and
evaluate the features of this particular hybrid matchmaker, but for the reasons
given above we do not think this test collection is suited for a broader compara-
tive evaluation of different semantic matchmakers. Based on this finding and the
discussion in Section 2 we doubt that the current setup of the S3 contest will yield
meaningful results.

To put our criticism above into the correct context, we would like to acknowl-
edge once more that sadly there is currently no better public test collection than
OWLS-TC2 and that the creation of a balanced, realistic and rich, high-quality
semantic service test collection involves an immense amount of effort that clearly
exceeds the capabilities of any single group. The organizers of the S3 Contest have
therefore stressed that such a collection can only be built by the community as a
whole and that the contest and its current employment of OWLS-TC2 is only a
first step in that direction. They have set up a wiki12 to initiate a corresponding
community effort. We hope that our critical analysis of OWLS-TC2 will help to
motivate such community effort and will therefore ultimately help to improve the
quality of the emerging collections.

3.2. Semantic Web Service Challenge

The Semantic Web Service Challenge is an initiative aiming to create a test bed for
frameworks that facilitate the automation of web service mediation and discovery.
It is organized as a series of workshops in which participants try to model and solve
problems described in the publicly available test bed. The test bed is organized
in scenarios (e.g. discovery or mediation), each one containing detailed problem
descriptions. Compared to the S3 contest the number of available services (at the
time of writing around a dozen) is relatively small, however the organizers put
strong emphasis on providing realistic and detailed scenarios.

The Challenge organizers have realized that the lack of comprehensive eval-
uation and test beds for semantic web service system is one of the major blockers
for industrial adoption of the used techniques. They have designed the challenge
having the following ideas in mind:

• Solution Independence. Existing test cases often suffer from the problem that
they have been reverse engineered from the solution, i.e. that the use case
has been created according to the strengths of a particular solution. This
hinders comparison across multiple systems. By letting the organizers not

12http://www-ags.dfki.uni-sb.de/swstc-wiki



50 Kuster, Lausen and K¨¨ onig-Ries¨

directly participate and by defining rules on how new scenarios can be added
the SWS Challenge tries to overcome this problem.

• Language Neutral. Closely connected to the above issue is the one how to
describe the problem set. Using a particular formalism for describing services
already implies the solution to a huge degree. In our opinion, the choice of
the right level of detail to include in the service and goal descriptions in
fact still constitutes one of the core research problems and should not be
dictated by the test bed for an evaluation. The SWS Challenge organizers
have consequently decided not to provide formal descriptions but only natural
language ones.

• No Participation Without Invocation. Each scenario provided comes with a
set of publicly available web services. On the one hand this should yield in
some industrial relevance, on the other hand it provides the organizers with
an unambiguous evaluation method. If a system claims to be able to solve a
particular problem (e.g. discovery of the right shipment provider), this can
be automatically verified by monitoring the SOAP messages exchanged.

Scenario Design. Within the research community only little consensus exists about
what information should be included in a static service description and how they
should be semantically encoded. The scenarios are thus described using existing
technologies (WSDL, XSD, and natural language text descriptions). In the follow-
ing we will explain the philisophy of the scenarios by means of the first discovery
scenario13 provided. This scenario includes five shipment services that are modeled
according to the role models of order forms of existing shipment companies on the
Internet. The services are backed by corresponding implementations that are part
of the test bed.

The task to solve is to discover and invoke a suitable shipper for a given
shipping request. The scenario contains a set of such requests which are categorized
into levels of increasing difficulty. It starts with Discovery Based on Destination
and adds weight and price criteria as well as simple composition and temporal
constraints to the more difficult problems. For each request the problem description
contains the expected correct solution (i.e. the list of matching services) already.

Evaluation Methodology. Solutions to a scenario are presented at the Challenge
workshops. The evaluation is performed by teams composed of the workshop or-
ganizers and the peer participants. The organizers are aware, however, that this
causes scalability problems if the number of participants increases and also is not
strictly objective.

The evaluation approach focuses on evaluating the functional coverage, i.e. on
whether a particular level of the problem could be solved by a particular approach
or formalism correctly or not. The intention is to focus on the how, that is the
concrete techniques and descriptions an approach uses to solve a problem and not

13http://sws-challenge.org/wiki/index.php/Scenario: Shipment Discovery



Evaluation of Semantic Service Discovery 51

on the time it requires for execution, thus no runtime performance measurements
are taken.

The organizers argue that in practice automatic and dynamic discovery is
not widely used, thus part of the challenge is to refine the challenge and to il-
lustrate the benefit of using semantic descriptions. The basic assumption to test
is whether approaches which rely more heavily on semantic annotations will be
easier adaptable to changes in the problem scenarios. Therefore the challenge does
not only certify functional coverage, but initially it was planned to also assess on
how elegant a solution can address the problems posed and how much effort was
needed to proceed from a simpler to a more complex problem level.

However it turned out that it is extremely difficult to assess this in an objec-
tive manner [9]. Measurements based on counting the number of lines (or state-
ments) of semantic description do not adequately represent the usability of an ap-
proach. Also the measurements of changes that are required to solve new problems
turned out to be problematic. They worked in the beginning when all participants
started with the same known set of problem levels which was then extended at con-
secutive workshops. However, participants entering the challenge right now have
access to all problem levels right away which makes an objective assessment of
the necessary change to solve the more advanced levels on top of the simpler ones
impossible. It is planed to test the usability of surprise scenarios for the envisioned
assessment at the next workshop.

Lessons Learned. By only describing the problems without any particular formal-
ism in mind the SWS Challenge organizers where able to attract various different
teams from different communities. Thus it successfully enables evaluation across
very heterogenous solutions. By requiring a grounding in real web services a signifi-
cant amount of effort was consumed both on the site of the organizers as well of the
participants with problems related to standard web service technology, which are
not strictly relevant when looking at discovery in isolation. This also may have dis-
couraged potential teams more familiar with knowledge representation than with
web service technology. On the other site the implementation has been proven use-
ful to (1) disambiguate the natural language text descriptions and (2) undoubtedly
show whether a participant has or has not solved a particular problem. By having
an implementation, no one could change the scenario to fit their solution without
failing at the automated tests based on exchanged SOAP messages.

With respect to the scenarios being described in informal natural language
only, it turned out that the original scenarios were indeed ambiguous in several
cases. However, during the course of usage of a particular scenarios these ambigu-
ities where discovered by the participants and could subsequently be resolved by
the authors of the particular scenario. Our experience shows that this way even
scenarios described in natural language only become sufficiently well-defined over
time. Usually the implementation also does disambiguate a scenario, however it is
not the most efficient way to find out about the intention of a particular aspect.



52 Kuster, Lausen and K¨¨ onig-Ries¨

3.3. DIANE Service Description Evaluation

Within the DIANE project14, a service description language, DIANE Service De-
scription (DSD) and an accompanying middleware supporting service discovery,
composition, and invocation have been developed. DIANE is one of the projects
taking part in the SWS Challenge. Besides the evaluation provided by the chal-
lenge, considerable effort has been put into devising an evaluation suite for seman-
tic service description languages[4]. While this work is certainly not completed
yet, it complements the SWS Challenge in some important aspects. The DIANE
evaluation focuses on four criteria an evaluation should measure:

1. Degree of Automation: Are the language and the tools powerful enough to
allow for automatic and correct service usage? That means: Given a service re-
quest and service offers, will the discovery mechanism find the best-matching
service offer and will it be possible to automatically invoke the service based
on these results?

2. Efficiency of Matchmaking: Is it possible to efficiently and correctly compute
the matchvalue of arbitrary offers and requests?

3. Expressiveness: Is it possible to describe real services and real service requests
in sufficient detail to meet Criteria 1? Can this be done with reasonable effort?

4. Decoupling: Will a discovery mechanism be able to determine similarity be-
tween service offers and requests that are developed independently of each
other? In other words: If a service requester writes his request without knowl-
edge of the existing service descriptions, does the language offer enough guid-
ance to ensure that suitable and only suitable services will be found by the
discovery mechanism?

It is quite obvious, that these criteria require contradictory properties of the
description language: While, e.g., Criterion 3 requires a highly expressive language,
Criterion 2 will be the easier to meet the less powerful the language is. Service
description languages thus need to strike a balance between these competing re-
quirements.

Criteria 1 and 2 can be evaluated basically by providing a proof-of-concept
implementation. We will not look at them in more detail here but instead focus
on the more interesting Criteria 3 and 4. To evaluate these, a benchmark has been
designed. This benchmark has been used for the DSD evaluation, so far. It is,
however, not language specific and can be used for other approaches, too.

To evaluate how well a service description language meets Criterion 3, a set
of real world services is needed. As mentioned earlier in the paper, the example
of the OWL-S TC shows that meaningful real world services are apparently not
easy to come by. In particular, meaningful real world services that are describedff
in sufficient detail are scarcely available. For our benchmark, we therefore chose a
different approach: A group of test subjects not familiar with semantic web technol-
ogy were asked to formulate service requests for two different application domains.

14http://hnsp.inf-bb.uni-jena.de/DIANE/



Evaluation of Semantic Service Discovery 53

We have chosen a bookbuying and train ticket scenario with typical end user re-
quests as one domain and a travel agency looking for external services that can be
included in applications as the second domain. The queries the test subjects de-
vised were formulated in natural language. This resulted in about 200 requests. In
preparation of the benchmark, domain experts developed ontologies they deemed
necessary to handle the two domains (books, money, trains, ....). Subsequently, the
experts attempted to translate the requests into DSD and computed how many
requests could be directly translated, how many could be translated but required
extensions of the ontologies and how many could not be appropriately expressed
using the language constructs provided by DSD. These three values measure how
well the language is able to describe realistic services of different types.

To evaluate whether decoupled description of offers and requests is possible,
a number of the test subjects were given an introduction to DSD. They were sub-
sequently divided into two groups that were not allowed to communicate with each
other. The groups were then asked to formulate service offers and requests, respec-
tively, from a given natural language description. The resulting DSD description
were then evaluated by the matcher and precision and recall of the matchmak-
ing were determined. High values for both parameters indicate that it is indeed
possible to decouple offer and request description. A summary of the benchmark
queries and results can be found online15.

3.4. Other Approaches

The annual IEEE Web Service Challenge16 [3] is similar in spirit to the S3 Match-
maker Contest, but focussed rather on syntactic or low level semantic matchmak-
ing and composition based on matching WSDL part names whereas we focus on
explicit higher level semantics.

Toma et al. [15] presented a framework for the evaluation of semantic match-
making frameworks by identifying different aspects of such frameworks that should
be evaluated: query and advertising language, scalability, reasoning support,
matchmaking versus brokering and mediation support. They evaluate a number of
frameworks in the service as well as the grid community with regard to these crite-
ria. The focus of the work is rather on the excellent survey than on the comparison
framework itself. While the framework does provide guidance for a structured com-
parison, it does not offer concrete test suites, measures, benchmarks or procedures
for an objective comparative evaluation.

In her PhD thesis [1], Åberg proposes a platform to evaluate service discov-
ery in the semantic web. However, her platform is rather a software architecture
to provide some guidance in the development of SWS frameworks than a real
evaluation platform and it does not become clear how this platform can help to
comparatively evaluate different web service frameworks. Despite of some inter-
esting starting points she does not provide a comprehensive framework (neither
in theory nor practice) that can be used for the evaluation of different discoveryff

15http://hnsp.inf-bb.uni-jena.de/DIANE/benchmark/
16http://www.ws-challenge.org/



54 Kuster, Lausen and K¨¨ onig-Ries¨

S3 Con-
test

SWS-
Challenge

DIANE

Scope of evaluation

Runtime performance + – –
Framework tool support and usability – – o
Expressivity of formalism and matchmaking – + +
Supported level of decoupling – – +
Quality of evaluation

Neutral to formalism o + +
Independent from solution – + o
Realistic and complex use cases – + o
Large test set + – o

Table 1. Preliminary comparison of complementary strengths of
the existing efforts.

approaches and furthermore ignores related approaches (like the SWS-Challenge
or the S3 Matchmaker Contest) completely.

Moreover we have looked into the evaluation results of various SWS research
projects (see for instance [12, 11, 2]). Many have spent a suprisingly small share of
resources on evaluation. For example RW2, an Austrian funded research project17,
has implemented different discovery engines for request and service description in
different logical languages, respectively different granularity. However as evaluationffff
only a relatively small set of a couple of dozen handcrafted services exist. The EU
projects DIP and ASG have also developed similar discovery engines. With respect
to evaluation they quote industrial case studies, however, in essence those are
also just a small set of service descriptions. Moreover due to intellectual property
rights restrictions the situation is even slightly worse, since not all descriptions are
publicly available and a comparative evaluation is thus impossible.

3.5. Conclusions

Our survey has shown that - despite of the amount of attention that SWS dis-
covery and matchmaking research receives - surprisingly little effort is devoted to
experimental and comparative evaluation of the various approaches. We found only
three approaches that intensively deal with SWS discovery evaluation in particu-
lar. Table 1 shows a schematic and simplified comparison of the different strengths
of these approaches which is only meant to give a very high level summary of the
extensive treatment above. All approaches can only be seen as starting initiatives
in the right direction. The SWS-Challenge is currently the best established ini-
tiative in the field, but the S3 Matchmaker Contest and the DIANE evaluation
complement it in important aspects. In particular the notions of decoupling the

17http://rw2.deri.at/



Evaluation of Semantic Service Discovery 55

creation of offer and request descriptions, of involving inexperienced users in de-
vising descriptions and all aspects related to runtime performance comparisons
are not covered by the challenge so far.

4. Related Work

The existing approaches to evaluate SWS discovery have been covered extensively
above. However, these approaches have not provided a critical review of the eval-
uation process itself so far. In contrast, the evaluation of evaluation in traditional
information retrieval has been subject of a number of studies, e.g. by Saracevic
[10] or Voorhees [17], but as we argue in Section 2, the results can not be directly
applied to the domain of SWS discovery. Similar meta-evaluations have not been
done in the domain of SWS discovery so far except for the work by Tsetsos et al.
[16], which is the one most closely related to ours. We share the author’s opinion
that there is a lack of established evaluation metrics, methodologies and service
test collections and agree with them that further analysis is needed to understand
whether and how well-known metrics like precision and recall can be applied to
service discovery. Tsetsos et al., however, focus on the weaknesses of coarse-grained
binary relevance judgements and suggest to use multi-valued relevance judgements
instead to exploit the fact that most service matchmakers support different degrees
of match instead of a binary match/fail decisions. In contrast, we provided an
in-depth discussion why the Cranfield paradigm is not applicable well to SWS dis-
covery evaluation and presented a comprehensive survey and discussion of current
service discovery evaluation efforts.

5. Directions for Future Work

5.1. Making Existing Evaluations More Transparent

We found that the existing evaluations generally lack a formal underpinning and
fail to clearly discuss the intention behind their design. This makes an objective
comparison difficult. As a result of our analysis in Section 3 we derive a preliminary
set of questions which should be answered by any evaluation approach.

Assumptions of the test-bed or evaluation. Every evaluation should explicitly state
these in order to make its results comparable:

• What are the assumptions on the formalisms / logical language used?
• What is the scope for discovery? E.g. is discovery only concerned with static
descriptions or does it also involve dynamic communication?

• What is the expected outcome of the discovery? Are ranked results expected
or a boolean match/nonmatch decision? If measures similar to recall or pre-
cision are used, are they defined in a meaningful way?



56 Kuster, Lausen and K¨¨ onig-Ries¨

Dimensions measured. Evaluations should clearly indicate and motivate their
scope like:

• Runtime performance, such as response time, throughput, etc.
• Scalability in terms of services.
• Complexity of descriptions required.
• Level of guarantees provided by a match. Does it assume manual post pro-
cessing or support complete automation such that services can be directly
executed as a result of the discovery process?

• Standard compliance and reusability. E.g. can existing ontologies be reused?

Probably because of the complexity of the matter the existing approaches
only address some of the points above. We believe by providing this initial list
of criteria we work towards making evaluations more transparent. This catalog
might help to classify test beds and make it easier to find a suitable candidate for
a planned evaluation. In addition, by answering the questions above explicitly, the
designer of a test set will increase the actual value of it. This is particularly true
since it helps to obtain a more objective result, given that current test sets are
mainly created after a particular solution has been developed and might be biased
towards that particular solution.

5.2. Towards a Standard Evaluation Methodology and Test Bed

None of the current evaluation approaches provides a comprehensive discussion
of the theoretical foundation of SWS discovery evaluation even though such a
discussion is necessary to justify the design decisions made by any evaluation
approach and ultimately to agree upon a standard way of evaluation.

This paper provides the first comprehensive summary of the current state of
the art in this field. As such it hopefully serves as an important first step towards
s standard evaluation methodology and test bed for semantic service discovery.
Only such an agreed-upon standard will allow to effectively compare approaches
and results in an objective way, thereby promoting the advancement of the whole
field as such. On the way to this standard, we identify the following rough roadmap
for future work.

1. The set of possible dimensions of evaluation have to be clearly identified and
motivated (what to evaluate).

2. For each of these dimensions suitable means of measurement have to be de-
signed and evaluated (which criteria to use and how to measure them).

3. The general requirements to the evaluation process itself have to be identified
(how to achieve validity, realiability and efficiency).

4. According to these requirements a common semantic service discovery test
bed needs to be established, which ultimately allows to effectively evaluate
and compare existing solutions with regard to all the dimensions in a unified
way. This will clearly be a continuous effort.



Evaluation of Semantic Service Discovery 57

6. Summary

We examined the state of the art of evaluation of SWS discovery. We discussed the
general applicability of the Cranfield paradigm predominantly used for evaluation
in IR and argued that this well-understood paradigm does not map directly to
the domain at hand. We continued by presenting an exhaustive survey of the
current evaluation approaches in SWS discovery and found that the few existing
approaches use very different settings and methodologies highlighting different
aspects of SWS discovery evaluation. A thorough discussion of the effects of the
decisions in the design of the evaluation on the results of that evaluation is missing
so far. We hope that this paper serves as a starting point towards a more systematic
approach to SWS discovery evaluation and provided suggestions for future work
in this direction.

References

[1] Cécile´ Åberg.˚̊ An Evaluation Platform for Semantic Web Technology. PhD thesis,
Department of Computer and Information Science, Linköpings Universitet Sweden,¨
2007.

[2] Anonymous. RW2 project deliverable D2.3: prototype implementation of the discov-
ery component, 2006.

[3] M. Brian Blake, William Cheung, Michael C. Jaeger, and Andreas Wombacher.
WSC-06: the web service challenge. In Proceedings of the Eighth IEEE Interna-
tional Conference on E-Commerce Technology (CEC 2006) and Third IEEE Inter-
national Conference on Enterprise Computing, E-Commerce and E-Services (EEE
2006), Palo Alto, California, USA, June 2006.

[4] Thomas Fischer. Entwicklung einer Evaluationsmethodik für Semantic Web Servicesf¨f
und Anwendung auf die DIANE Service Descriptions (in German). Master’s thesis,
IPD, University Karlsruhe, August 2005.

[5] Donna Harman. Overview of the first Text REtrieval Conference (TREC-1). In Pro-
ceedings of TREC-1, Gaithersbury, Maryland, USA, November 1992.

[6] Mahboob Alam Khalid, Benedikt Fries, and Patrick Kapahnke. OWLS-TC - OWL-S
service retrieval test collection version 2.1 user manual, October 2006.

[7] Matthias Klusch, Benedikt Fries, and Katia Sycara. Automated semantic web service
discovery with OWLS-MX. In Proceedings of the 5th Intern. Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan, May
2006.

[8] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semantic web services. IEEE
Intelligent Systems, 16(2):46–53, 2001.

[9] Charles Petrie, Tiziana Margaria, Ulrich Küster, Holger Lausen, and Michal¨
Zaremba. SWS Challenge: status, perspectives and lessons learned so far. In Pro-
ceedings of the 9th International Conference on Enterprise Information Systems
(ICEIS2007), Special Session on Comparative Evaluation of Semantic Web Service
Frameworks, Funchal, Madeira-Portugal, June 2007.



58 Kuster, Lausen and K¨¨ onig-Ries¨

[10] Tefko Saracevic. Evaluation of evaluation in information retrieval. In Proceedings
of the 18th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR95), pages 138–146, Seattle, Washington,
USA, July 1995.

[11] Adina Ŝ rbu. DIP deliverable D4.14: discovery module prototype, June 2006.ˆ

[12] Adina Ŝ rbu, Ioan Toma, and Dumitru Roman. A logic based approach for serviceˆ
discovery with composition support. In Proceedings of the ECOWS06 Workshop on
Emerging Web Services Technology, Zurich, Switzerland, December 2006.¨

[13] Walter F. Tichy. Should computer scientists experiment more? IEEE Computer,
31(5):32–40, May 1998.

[14] Walter F. Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A. Heinz. Experimen-
tal evaluation in computer science: a quantitative study. Journal of Systems and
Software, 28(1), 1995.

[15] Ioan Toma, Kashif Iqbal, Dumitru Roman, Thomas Strang, Dieter Fensel, Brah-
mananda Sapkota, Matthew Moran, and Juan Miguel Gomez. Discovery in grid and
web services environments: A survey and evaluation. International Journal on Mul-
tiagent and Grid Systems, 3(3), 2007.

[16] Vassileios Tsetsos, Christos Anagnostopoulos, and Stathes Hadjiefthymiades. On the
evaluation of semantic web service matchmaking systems. In Proceedings of the 4th
IEEE European Conference on Web Services (ECOWS2006), Zurich, Switzerland,¨
December 2006.

[17] Ellen M. Voorhees. The philosophy of information retrieval evaluation. In Evaluation
of Cross-Language Information Retrieval Systems, Second Workshop of the Cross-
Language Evaluation Forum (CLEF 2001), pages 355–370, Darmstadt, Germany,
September 2001.

Ulrich Küster¨
Institute for Informatics
Ernst-Abbe-Platz 2-4
D-07743 Jena
Germany
e-mail: ukuester@informatik.uni-jena.de

Holger Lausen
Digital Enterprise Research Institute
University of Innsbruck
6020 Innsbruck
Austria
e-mail: holger.lausen@deri.at

Birgitta König-Ries¨
Institute for Informatics
Ernst-Abbe-Platz 2-4
D-07743 Jena
Germany
e-mail: koenig@informatik.uni-jena.de



Whitestein Series in Software Agent Technologies, 59–75
©c 2008 Birkhäuser Verlag Basel/Switzerland¨

A Framework for Dynamic Web Services Com-
position

Freddy Lécu´´ e, Eduardo Silva and Lu´´ ıs Ferreira Pires´

Abstract. Dynamic composition of web services is a promising approach and at the
same time a challenging research area for the dissemination of service-oriented appli-
cations. It is widely recognised that service semantics is a key element for the dynamic
composition of Web services, since it allows the unambiguous descriptions of a ser-
vice’s capabilities and parameters. This paper introduces a framework for performing
dynamic service composition by exploiting the semantic matchmaking between service
parameters (i.e., outputs and inputs) to enable their interconnection and interaction.
The basic assumption of the framework is that matchmaking enables finding semantic
compatibilities among independently defined service descriptions. We also developed
a composition algorithm that follows a semantic graph-based approach, in which a
graph represents service compositions and the nodes of this graph represent semantic
connections between services. Moreover, functional and non-functional properties of
services are considered, to enable the computation of relevant and most suitable ser-
vice compositions for some service request. The suggested end-to-end functional level
service composition framework is illustrated with a realistic application scenario from
the IST SPICE project.

Keywords. Semantic Web, Web Services, Service Composition, Automated Reason-
ing.

1. Introduction

An important benefit of the Service-Oriented Architecture (SOA) is that it enables dy-
namic service binding, which allows service users to discover, select and invoke services
at runtime. Web services technologies [1] provide a suitable technical foundation for de-
veloping and deploying loosely coupled and reusable software components, which can be
invoked through their service ports. Web services are distributed and programmatically
accessible over standard Internet protocols, and interoperate independently of the pro-
gramming languages, operating systems and hardware platforms used to implement them.



60 Lécu´´ e, Silva and Ferreira Pires´

Therefore, Web services technologies offer the feature richness, flexibility and scalability
needed by enterprises to profit from the SOA benefits.

Automated service discovery, selection and composition are expected to enrich the
experience of service end-users through value-added services, and to allow automated
processes to interact with minimal human intervention [2]. However, some work still has
to be done to appropriately support dynamic and automated service discovery, selection
and composition with the current Web services technologies. The automation of these
tasks requires some knowledge about the services, such as: (i) description of the service
capabilities, for example, in terms of the semantics of IOPEs (Input, Output, Preconditions
and Effects); (ii) process model, which provides a description of the service activities, in-
teraction protocol and exchanged messages; (iii) grounding specification of the service,
which describes the coding used to map information onto messages and the protocols used
to exchange these messages. These requirements are expected to be covered by defining
semantic models of web services, using techniques from the Semantic Web services [3].
A Semantic web service is a web service described in a language with well-defined se-
mantics. This feature of the Semantic web services enables different kinds of inference
and reasoning based on the service semantic descriptions, in order to facilitate dynamic
service discovery, selection and composition.

In order to tackle the challenge of service composition, most of the work done until
now has focused on two main composition approaches, namely by considering functional
[4, 5, 6, 7, 8] and process [9, 10, 11, 12] service aspects. The approach based on func-
tional aspects aims at finding a sequence of atomic components described in terms of
their IOPEs that matches a given query. This sequence can be executed from the start
conditions provided by the query, so that the query goal is satisfied at the end of the se-
quence. The approach based on process aspects considers services as stateful processes
with a choreography represented in terms of sequential, conditional, and iterative steps
imposed by the service. These two composition approaches are complementary and form
an interesting trade-off to develop solutions for service composition [13].

In this paper we focus on a framework for service composition based on functional
aspects, in which services are chained according to their functional description (IOPEs).
The suggested framework uses the Causal Link Matrix (CLM) formalism [14] in order to
facilitate the computation of the final service composition as a semantic graph. The nodes
of this semantic graph represent semantic connections between component services. By
computing a CLM we increase the amount of relevant service compositions that can be
obtained. The set of possible solutions are pruned, at composition time, in order to rank
the service compositions according to an optimization criteria. These criteria can be de-
fined based on the semantic similarity of component services and/or the non-functional
properties of the compositions calculated by aggregating the non-functional properties of
the component services.

The rest of the paper is organized as follows: Section 2 motivates our framework
with application scenarios and an example; Section 3 introduces the SPICE Automatic
Composition Engine (ACE) architecture in which our framework is used;
Section 4 presents our framework for dynamic service composition; Section 5 comments
on related work, and; Section 6 gives some final remarks.



A Framework for Dynamic Web Services Composition 61

2. Motivation

Dynamic composition of services aims at composing services that satisfy a given service
request from an end-user or service developer. Services are composed of existing atomic
services, which are orchestrated in the service composition.

Once dynamic service composition mechanisms are available, the service creation
task performed by end-users and service developers is expected to be simplified. In this
paper we specially focus on the service developer scenario that we are developing on the
IST SPICE [15] project. In this scenario a service developer aims at creating a new service
with some specific functional and non-functional properties. To achieve this, a formalism
should be used to describe these properties in a service request, specifying these proper-
ties unambiguously to allow automatic reasoning based on the service request. After the
service request is specified, the framework for dynamic service composition is capable of
discovering, matching and composing a set of services that together fulfil the request. The
resulting compositions are returned to the service developer, who should select the com-
position that best fits his needs. The service developer may adapt the selected composi-
tion further to fulfil more specific requirements. This process provides a service developer
with a tool for automatically finding and composing a set of services that meet his needs,
relieving him from the burden of manually dealing with the whole service creation cycle.

2.1. Example

We consider an example in which a service developer wants to develop a new service that
receives a piece of text, translates it to English, and sends the translated text by SMS to
a given destination number. In case no support is available for the service composition,
the service developer is forced to create the service by scratch by connecting the available
atomic services in the service composition implementation manually. In case an orches-
tration language such as WS-BPEL [16] is available, the service developer can specify
the service composition in terms of an orchestration of the atomic services. In our exam-
ple this corresponds to an orchestration of the translation services and SMS messaging
services. The objective of our framework is to go one step further and automatically gen-
erate service compositions that cope with the service developer service request and also
meet the non-functional properties (e.g., cost, response time, etc.) specified in the service
request.

2.2. Service Request

Service developers specify service requests in terms of annotations that define the re-
quested service inputs, outputs, goals, preconditions, effects and ontologies. These an-
notations are references to elements defined on ontologies described in OWL [17]. An
example of annotated service request is:
<Input>

<"LanguageOnt#Language" name="srcLang">
<"LanguageOnt#English" name="trgtLang">
<"LanguageOnt#Text" name="txtToTrans">
<"TelecomOnt#PhoneNum" name="destNumber">

</Input>
<Output>

<"TelecomOnt#AckSMS" name="AcknowledgmentSMS">



62 Lécu´´ e, Silva and Ferreira Pires´

</Output>
<Preconditions/><Effects/>
<Goal>

<"GoalOnt#translate">
<"GoalOnt#sendSMS">

</Goal>
<Non-functional>

<"NFPOnt#Cost" value=6>
</Non-functional>
<Ontologies>

<"GoalOnt" "TelecomOnt" "NFPOnt" "LanguageOnt">
</Ontologies>

These annotations indicate that the service developer requests a service that trans-
lates a piece of text to English and sends the translated text by SMS to a given destination
number. This is the running example used to illustrate our framework for dynamic service
composition in this paper.

3. Automatic Service Composition Engine

The aim of SPICE is to provide a platform to support the development and deployment
of innovative and value-added services during their whole life cycle. The creation and
development of services is achieved in a service creation environment, which allows the
manual creation of services for end-users and service developers. The service creation en-
vironment also contains an Automatic Composition Engine (ACE), which automatically
constructs a service that fits a service request issued by end-users or service developers.

The SPICE ACE contains four basic components: Semantic Analyser, Composition
Factory, Property Aggregator and Matcher. Figure 1 depicts the ACE architecture.

FIGURE 1. SPICE ACE Architecture

Figure 1 shows the two basic ACE usage scenarios: (i) an end-user issues a service
request in natural language (at runtime) and gets the most suitable service composition,



A Framework for Dynamic Web Services Composition 63

or (ii) a service developer issues a service request in some well-defined formalism (at
design-time) and gets a set of relevant service compositions.

The end-user is shielded from the complexity of the composition process by be-
ing allowed to request services in natural language. These requests are processed by the
Semantic Analyser, which constructs a formal service request according to the ACE’s ser-
vice request formalism. The resulting formal request follows the same structure used by
the service developer for defining service requests.

When a formal service request is defined, the Composition Factory queries the ser-
vice repository for a service that matches the service request. If a match exists on the
repository, the matching service is returned. In case no match is found, the Composition
Factory creates a composite service that matches the request. In principle, the Composi-
tion Factory may generate multiple alternative compositions that match a service request.

Services and service requests are characterized by their functional and non-func-
tional properties. Functional properties are the services’ goals, inputs, outputs, precondi-
tions and effects. These properties are used to perform the service discovery, matching
and composition. Examples of non-functional properties are cost, security, performance,
reliability, etc. Non-functional properties are used to limit the space of compositions that
fulfil the service request, and to rank the generated set of compositions. Service and ser-
vice request descriptions also contain the domain ontologies used to define the functional
and non-functional properties in an unambiguous form.

The Composition Factory uses the Property Aggregator to compute the non-func-
tional properties of service compositions each time a new service is added to a service
composition. The non-functional properties of the resulting service composition are cal-
culated by aggregating the non-functional properties of the atomic component services.

The set of generated service compositions is then passed to the Matcher component,
which matches each service composition with the service request, using the aggregated
non-functional properties and the measures of semantic similarity. In the scenario where
the end-user requests a service, the best matching is returned to the end-user. This match-
ing is obtained by taking the user’s profile and context information into consideration,
which are managed by the SPICE platform. In the scenario where the service developer
issues a service request, the full set of generated compositions is returned, possibly ranked
taking into account the resulting aggregated non-functional properties and/or the measures
of semantic similarity.

4. Dynamic Web Service Composition

The Composition Factory component is responsible for the creation of service composi-
tions based on a formal service request, and is the focus of this section. After receiving
the developer’s service request, the Composition Factory queries the service repository in
order to retrieve an unordered set of services required to compute the service composition.
Semantic connections between web services are stored on a CLM+, which is then used to



64 Lécu´´ e, Silva and Ferreira Pires´

compute the semantic graph-based composition that represents the possible service com-
positions matching the service request. Figure 2 gives an overview of the steps performed
by our dynamic service composition framework.

FIGURE 2. Service Composition Framework

4.1. Causal Links

When using functional composition approaches, semantic connections between different
component web services are the main issue to be handled in order to create new value-
added web services. These connections are mainly useful to semantically link output to
input parameters of web services, creating in this way simple sequential compositions of
web services. A composition is defined as an ordered set of web services in which the
web services of this set are semantically linked to each other.

Input and Output parameter types of semantic web services are concepts defined in
an ontology T . These parameter types can be represented by using some standard lan-
guage, such as, e.g., OWL-S [18] (at profile level), WSML [19] (at capability level), or
SA-WSDL [20]. Retrieving the semantic connection between two Web services sx and sy

is similar to discovering the semantic similarity between an output parameter Out ss y of
sy and an input parameter In ssx of sx (or vice-versa). Consequently, our goal is to find
a matchmaking [21] function between two knowledge representations encoded using the
same ontology T . Causal links1 [14] between web services not only value these semantic
matchmaking functions, but also measure the quality of semantic links between web ser-
vices. In other words, a causal link (see figure 3) describes a semantic relation between
an output parameter Out ssy ∈ T of a service sy and an input parameter In ssx ∈ T of a
service sx. Thereby sx and sy are semantically and partially linked according to a match-
making function SimT (Out sy, In sx). The matchmaking function SimT determines
the matchmaking type [23, 24] between these two parameters, and can have the following
values:

1In AI planning area, causal links are sometimes called protection intervals [22].



A Framework for Dynamic Web Services Composition 65

• Exact (≡) if the output parameter Out ssy of sy and the input parameter In ssx of
sx are equivalent concepts; formally, T |= Out ssy ≡ In sx.

• PlugIn (
) if Out sy is sub-concept of In sx; formally, T |= Out sy 
 In sx.
• Subsume (�) if Out sy is super-concept of In sx; formally,T |= In sx 
 Out sy .
• Intersection (�) if the intersection of Out ssy and In sx is satisfiable; formally,
T �|=�� Out sy � In sx 
 ⊥.

• Disjoint (⊥) if Out sy and In sx are incompatible; formally, T |= Out ssy

� In sx 
 ⊥.

ServiceService

Causal Link cl

Service
Input Parameter

Output Parameter

(SimT (Out sy, In sx))
sy

In sy1

In syn

In syi

Out syn

Out syyy1

sx Out sx

In sx1

In sxn

Out sy

In sx

Causal Link cl

FIGURE 3. Causal Link.

Since a causal link is related to a logical dependency among input and output param-
eters of different web services, [14] defines a causal link as a triple 〈sy, SimT (Out sy,
In sx), sx〉. sx and sy refer to two web services in a set of available web services SWs.
The concept Out sy is an output parameter of the service sy whereas the concept In sx is
an input parameter of the service sx. The matchmaking function SimT returns the match-
ing type depending on the matching degree between the concepts Out ss y, In sx ∈ T . A
causal link 〈sy, SimT (Out sy, In sx), sx〉 implies that (a) sy precedes sx, since an out-
put of sy is consumed by an input of sx, and (b) no web service call is planned between
sx and sy .

Definition 1. (Valid Causal link)
A causal link 〈sy, SimT (Out sy, In sx), sx〉 is valid iff SimT (Out sy, In sx) is not a
Disjoint matchmaking.

The matchmaking type returned by the causal link is useful to value the possible
semantic connection between two web services and also to compare links. Considering
two web services sy and sz with their respective output parameters Out ssy and Out sz .
Considering a service sx so that both Out sy and Out sz semantically match with In sx,
SimT is able to quantify the two connections (Out ssy, In sx) and (Out sz, In sx) and
also to order them with respect to the matchmaking.

Although the matchmakings Exact, PlugIn, and Disjoint can be used without
any change to value causal links in a web service composition, causal links valued as
Intersection or Subsume (also known as non-robust causal links) need some refinements to



66 Lécu´´ e, Silva and Ferreira Pires´

be fully efficient for causal links composition. Further details on web service composition
with non-robust causal links are given in [25].

Since a composition of web services consists of a partial order of web services in
which these services are semantically chained by causal links, web service composition
can be considered as a composition of causal links. Therefore in this paper we simply
reuse and extend the CLM model to store the causal links that are relevant for service
composition.

4.2. Service Discovery

We perform service discovery based on the service request goals in order to discover
candidate services for the composition. To discover these services we assume that all
the services in the service repository have a semantic goal description and references to
ontologies, which can be used to search and discover the relevant services. Our framework
does not support service discovery; we simply assume the availability of functionality to
perform goal-based discovery in the service execution environment. In SPICE, ontology-
based discovery is expected to be supported by a discovery facility.

In our running example, two main goals have been defined for the service request:
GoalOnt#translate and GoalOnt#sendSMS. Using these semantic annotations, the
repository is queried for existing services that cope with these goals, or services that have
goals semantically close to these goals. We assume that a set of services SWs is returned,
and no single service fully matches the service request. Table 1 shows a possible list of
discovered services SWs, with respective inputs, outputs and non-functional properties
semantic types and values.

TABLE 1. Discovered Services

Service Input Output NF properties
S1 LanguageOnt#Language LanguageOnt#EnglishText NFPOnt#Cost 1

LanguageOnt#English
LanguageOnt#Text

S2 LanguageOnt#French LanguageOnt#EnglishText NFPOnt#Cost 4
LanguageOnt#English
LanguageOnt#Text

S3 TelecomOnt#PhoneNum TelecomOnt#AckSMS NFPOnt#Cost 1
LanguageOnt#Text

S4 TelecomOnt#PhoneNum TelecomOnt#AckSMS NFPOnt#Cost 3
LanguageOnt#Text

S5 TelecomOnt#AckSMS TelecomOnt#SuccessProcess NFPOnt#Cost 1

Table 1 shows that service S1 is responsible for translating any text in any language
to English, whereas S2 translates text from French to English. These web services refer to
three simple FL0 ontologies, namely LanguageOnt, TelecomOnt and NFPOnt. The
properties of these parameters are: EnglishText � Text, French � Language and
Cost � NFProperty.

4.3. CLM and Non-functional Parameters

We extend the definition of CLM [14] below by considering not only causal links but also
non-functional parameters of services. In this way, a CLM extended with non-functional



A Framework for Dynamic Web Services Composition 67

parameters, denoted as CLM+ (definition 2), can be used in the automated web service
composition process by classifying web services in an appropriate way, according to the
causal link and the services’ non-functional parameters. All causal links are pre-computed
in the CLM+ to facilitate web service composition. The more valid causal links can be
found, the better the solution to the functional composition problem.

Definition 2. (CLM+MM )+

An extended CLM (CLM+MM ), Mp,p, is defined as a p×p matrix of elements mi,j , which are
a set of triplets (s(( y , score, �qsy ) ∈ SWs ×{Exact, P lugIn, Subsume, Intersection}×
�n with

(sy, score, �qsy ) = (sy, SimT (Out sy, cj), �qsy )

Columns cj,j∈{1,...,p} and rows ri,i∈{1,...,p} are both labelled by Input(SWs) ⊆ T i.e.,
the inputs parameters of services SWs; ri ∈ T ∩ In(sy) is the label of the ith row such
that In(sy) is the set of input parameters of sy; and cj ∈ T ∩ (Input(S(( Ws)) is the labels

of the jth column, Out sy ∈ Out(sy).

A CLM+ is a matrix with entries in P(SWs × {Exact, P lugIn, Subsume,
Intersection} × �n). Each entry of the matrix refers to a set of triples (sy, score, �qsy ),
such that the score represents the semantic similarity between an output parameter
Out sy ∈ Out(sy) of a web service sy and an input parameter of another web service
in SWs. Therefore a CLM+ pre-computes the semantic similarities between all output
and input parameters of a closed set of web services, i.e., a set of relevant web services
for composition. According to definition 2, a CLM+ contains all enabled, legal and valid
links since causal links with a Disjoint score are omitted in the CLM+. The value of
causal links SimT (Out sy, cj) between two parameters in a CLM+ is an element of the
set {Exact, P lugIn, Subsume, Intersection}. The latter set aims at value the semantic
connection between an output parameter Out ssy ∈ T of sy and cj ∈ Input(SWs) with
Exact being the best and Intersection being the worst.

Moreover, a CLM+ aims at storing non-functional properties of web services as a
vector in �n. Therefore, any service sy referred to in the matrix contains not only semantic
connections with some other services of SWs, but also its own non-functional properties
�qsy ∈ �n.

Example 1. (Illustration of the CLM+MM indexes and labels.)
Let {Si}i,i∈{1,...,6} be the set of web services SWs (table 1). The number of rows and
columns of the CLM+MM is equal to 6 according to definition 2. Thus rows, columns of the
CLM+MM M are indexed by {1, ..., 6} and labelled by the concepts Language, French, Eng-
lish, Text, PhoneNum and AckSMS, respectively (table 2).2 M refers to a CLM+ with en-
tries in P(SWs ×{Exact, P lugIn, Subsume, Intersection}×�). The non-functional
properties of Si,1≤i≤6 refer to a simple cost value in �.

The CLM+ construction depends on the number of output and input parameters
of web services in SWs. Suppose #(Output(SWs)) and #(Input(SWs)) be respec-
tively the number of output parameters of services in SWs and the number of input
parameters of services in SWs. The algorithmic complexity for the causal link matrix



68 Lécu´´ e, Silva and Ferreira Pires´

TABLE 2. Labels of the rows ri and columns cj of the 6× 6 matrix M.

i/j index 1 2 3 4 5 6

ri.label/ci.label Language French English Text PhoneNum AckSMS

construction is θ(#(Input(SWs))×#(Output(SWs))) or θ((Max{#(Input(SWs)),
#(Output(SWs))}2) so square in the worst case [26]. In other words, the CLMs+ con-
struction consists of finding a semantic similarity score between the output parameters
of all web services sy ∈ SWs and the input parameters of another web service in SWs.
In case score is not null, the triple (sy , score, �qsy) is added in the CLM+ according to
definition 2. For further details [26] defines the whole process of the CLM + construction.

Example 2. (CLM+MM illustration)
The entry m4,4 (i.e., mText,Text) of the matrix is equal tot {(S1,
, 1), (S2,
, 4)}. In
SWs there is a service S1 with an input parameters Text and an output parameter
EnglishText, which is semantically similar to Text. 〈S1, SimT (EnglishText,
T ext), S3〉 is a valid causal link. The EnglishText and Text concepts match with the
Plug-in match (
(( in the matrix) according to the definition of SimT . In this way all causal
links are referred in the CLM+MM M as follows (≡(( refers to the Exact match):

M =

⎛
⎜
⎛⎛

⎝⎜⎜
∅ ∅ ∅ {(S1,	,1)} ∅ ∅
∅ ∅ ∅ {(S2,	,4)} ∅ ∅
∅ ∅ ∅ {(S1,	,1),(S2,	,4)} ∅ ∅
∅ ∅ ∅ {(S1,	,1),(S2,	,4)} ∅ {(S3,≡,1),(S4,≡,3)}
∅ ∅ ∅ ∅ ∅ {(S3,≡,1),(S4,≡,3)}
∅ ∅ ∅ ∅ ∅ ∅

⎞
⎟
⎞⎞

⎠⎟⎟

The key contribution of CLM+ is a formal and semantic model to represent and
manage a relevant set of services together with their non-functional properties. Web ser-
vices of SWs are discovered first, to facilitate the composition process. Therefore the set
of web services SWs is closed in order to limit the dimension of CLM+. Such a model en-
ables performance analysis of the proposed compositions by considering causal links and
non-functional properties of services. CLM+ aims at pre-chaining web services according
to their semantic similarity based on their Output/Input specification. CLM+ describes all
possible matchings between all the web services in SWs as semantic connections. More-
over, the CLM+ model is an interesting trade-off to support development activities such
as services composition verification (valid causal link) or repair, by insertion and deletion
of web services in the compositions.

Once web services in SWs are semantically chained according to the causal link
criteria, the composition algorithm proceeds by generating the compositions graph.

4.4. Web Service Composition Process

The actual web services composition is performed using a graph-based approach, starting
from the service request outputs, and possible effects, and composing backwards in the
direction of the service request inputs and possible preconditions. The composition algo-
rithm is executed after performing service discovery and CLM + construction. The CLM+

contains the services that match the service request goals, and have valid causal links. The



A Framework for Dynamic Web Services Composition 69

algorithm aims at finding a set of services with exact interface matchings (Exact), but
other semantic matchings (PlugIn, Subsume, Intersection), are also considered in the
graph composition algorithm. This is a realistic approach, since perfect matches may not
always be possible. The non-functional properties are taken into account to optimise the
search for service compositions. If a graph composition branch does not comply with the
requested non-functional properties, the composition on this branch is aborted. Figure 4
depicts the graph-based service composition algorithm.

FIGURE 4. Web Service Composition Algorithm

The algorithm defines N as the set of nodes to be resolved. Each element of N
represents a node with inputs that do not fully match the inputs of the service request. The
algorithm initializes N with the services that provide outputs Out(s0) from the original
service request. After that, the algorithm evaluates whether the retrieved set of nodes
require the same inputs In(s0) as the service request. If services that match both semantic
descriptions Out(s0) and In(s0) are found, and N is empty, and the services satisfy the
non-functional properties of service request, the graph composition algorithm stops. In
case the query returns another service Sz that does not match In(s0), but delivers Out(s0)
and matches the requested non-functional properties, S z is added to N . The algorithm
then processes each node ni of N , by searching in the CLM+ for services that match
the unresolved ni inputs (and possibly preconditions). For each matching service found,
the composition graph is checked, inspecting whether the composition’s aggregated non-
functional properties match the requested non-functional properties, if it complies the
service being resolved is removed from N. If there is no match, the composition graph
branch that is being resolved is pruned, meaning that the elements being resolved are
removed from N , and the composition branch is removed from the graph composition.
Another heuristic that can be used to avoid unrealistic compositions is to limit the graph
depth, restricting in this way the maximum number of services in a service composition.



70 Lécu´´ e, Silva and Ferreira Pires´

Applying the graph composition algorithm to the running example, in the first step,
services that provide as output an AckSMS, defined on the TelecomOnt ontology, are
selected. Two services {S3, S4SS } are found in the CLM+ matrix. None of these services
fully match the service request inputs, but they provide an Exact match to one of the re-
quested inputs (PhoneNum), so in these branches this requested input is set as solved for
the graph composition. Given that not all the inputs have been solved, and providing that
the considered non-functional property NFPOnt#Cost is satisfied, services {S 3, S4SS }
are stored in N as services that provide the requested output, with an Exact semantic
match, but do not completely match the requested input. In the second step, S 3 is re-
solved by discovering services in the CLM+ that provide an output semantically related
to the input of S3, namely Text. Services {S1, S2} have been discovered to provide the
text message to S3. These services resolve the requested inputs In(s0), although only as a
partial semantic match (Plugin), and they meet the requested non-functional property, so
that the search is closed on these branches. Having reached the In(s 0) on these branches,
N is inspected to check whether it is empty or not. N still contains S4 to be resolved.
In the third step, S4 is resolved, also by using services {S1, S2}, and the composition
process is finished for this branch. In this step, the aggregated non-functional property
Cost of the S2 → S4SS does not meet non-functional property requirement of the service
request, so this graph branch is removed from the composition graph. After this step, N is
checked, and since it is empty the algorithm stops. Table 3 represents the steps discussed
above, the compositions found by the graph composition algorithm, and their respective
aggregated non-functional properties.

TABLE 3. Service Compositions

Step N Compositions NF properties
1 {S3, S4} S3 1

S4 3
2 {S4} S1 �→ S3 2

S2 �→ S3 5
S4 3

3 {-} S1 �→ S3 2
S2 �→ S3 5
S1 �→ S4 4

Table 3 shows that the service developer obtains three alternative compositions. Fur-
ther computations could be done to reduce these possibilities and determine the “best”
composition as a function of the measured semantic similarity and the non-functional
properties. However, we believe that the service developer should receive all found com-
positions that match his request, and choose the one(s) that best fit his needs himself.
Nevertheless, we suggest in the sequel an algorithm to rank the generated compositions,
using the compositions semantic similarity and non-functional properties values.

4.5. Ranking of Composition Results

Our web service composition algorithm aims at retrieving compositions with valid causal
links and also ensuring that the non-functional properties of the service request are sat-
isfied by the generated compositions. However, our algorithm may return more than one



A Framework for Dynamic Web Services Composition 71

composition, since some services can satisfy the same goals with different non-functional
properties, or can satisfy semantically close goals with the same non-functional proper-
ties. In order to help service developers in their choice of service composition, we propose
to rank composition results, for example, by first considering the semantic value of their
causal links and after that, using the end-to-end non-functional properties of the compos-
ite services, in case the compositions have identical causal link values. To this end we
assign a score for each kind of semantic connection. A causal link with an Exact match-
ing is valued to 1, a causal link with a PlugIn matching is valued to 3

4 , a causal link with
a Subsume matching is valued to 1

2 and a causal link with a Intersection matching is
valued to 1

4 . Such a valuation is consistent since an Exact matching between an output
parameter and an input parameter is more preferred than a causal link with a PlugIn,
SubSume or Intersection matching.

Algorithm 1: Ranking of Composition Results.

Input: An unordered set of composition results {ScSS 1 , . . . , Scn}.1

Result: An ordered set of composition results (based first on causal links and second on non2

functional properties of services).
begin3

foreach Sci do4

semantic quality ScSS i ← Average of causal links in ScSS i ;5

NF quality ScSS i ← Function of NF properties in ScSS i ;6

end7

({Sc1 , . . . , Scn},≤) ← Ordering {Sc1 , . . . , Scn} first by means of their semantic quality8

and then by means of their NF quality;
return ({Sc1 , . . . , Scn},≤);9

end10

Non-functional properties of compositions are required in case two potential com-
positions of web services Sci and Scj have the same semantic quality. We overcome this
issue by valuing each composition result Sci by means of a function (line 6 of algorithm
1) of the non-functional properties involved in S ci . The latter function depends on the
non-functional properties of the atomic services of the composition. For instance, a sum
is required to value the final cost of a composite service whereas the minimum is required
to compute the throughput of a composite service. Since web services may have multiple
non-functional properties, it is necessary to weight these properties, e.g., by means of user
preferences. For example, an end-user may give more importance to the cost of a com-
posite service whereas an another end-user may prefer the composite web service with
the best throughput. In the service developer scenario such a ranking method could help
the developer especially in case a large amount of valid composition results are returned.

5. Related Work

Recently the authors of [27] have addressed in detail the problem of interleaving web ser-
vice discovery and composition, but have considered only simple workflows where web
services have one input and one output parameter. In this case the web service composition



72 Lécu´´ e, Silva and Ferreira Pires´

plan is restricted to a sequence of limited web services corresponding to a linear work-
flow of web services. The suggested solution retrieves a sequence of causal links between
web services, hence a linear and total order of services. Aiming of generating a composite
service plan out of existing services, in [28] a composition path is proposed that consists
of a sequence of operators that compute data, and connectors that provide data transport
between the operators. The search for possible operators to construct a sequence is based
on the shortest path algorithm on the graph of the operators space. However, only two
kinds of services (operator and connector) with one input and one output parameter are
considered, which means that only the simplest case of service composition is covered.
Contrary to [27] and [28], the model proposed in this paper may also consider services
with more than one input and output parameter.

In [29], a composition of services is considered as a directed graph, where nodes are
linked by the matching compatibility (Exact, Subsume, PlugIn, Disjoint) between
input and output parameters. Based on this graph, the shortest sequence of web services
from the initial requirements to the goal can be determined. This sequence corresponds
to an ordered set of web services, so that this set matches all expected output parameters
given the inputs provided by a user. [14] perform semantic web service composition by
pre-computing the causal link matrix. Their composition strategy based on AI planning
performs a regression-based approach and returns a set of correct, complete and consis-
tent plans in which services are actions semantically linked by causal links. However,
these two approaches [29, 14] compute the best composition according to the semantic
similarity of output and input parameters of web services, without considering any non-
functional properties of these services. A formalism and modelling tool called interface
automata has been introduced in [30] to represent web services and perform composi-
tions. Atomic services are stored as a graph where each node represents input and output
parameters and edges represent web services. Each web service contains a description of
its inputs, outputs, and dependencies of other web services. Web service descriptions and
the graph are used to discover composition results that satisfy a service request. In case
several alternative compositions are found, no optimization mechanism for selection is
provided, so that in case several composition results match a request the most suitable
compositions still have to be selected.

In [31] a composer is introduced to perform web services composition. The com-
poser supports the end user to select web services for each activity in the composition
and to create flow specifications to link them. Upon selecting a web service, the web ser-
vices that can produce an output that could be fed as the input of the selected service
are listed, after filtering based on profile descriptions. The user can manually select the
service that he wants to fit in at a particular activity. After selecting all the services, the
system generates a composite process in DAML-S. The composition is executed by call-
ing each service separately, and passing the results between services according to the flow
specifications. However, the composition is still semi-automatic because the user must
select a web service in a restricted list. Our formal model presented in this paper aims at
automating the process of web service selection according to the causal link criterion and
the non-functional properties of services.



A Framework for Dynamic Web Services Composition 73

6. Final Remarks

Although web services technology is still in its infancy, some proposals are being made
to enable dynamic composition of web services. Nevertheless, to the best of our knowl-
edge, few of these proposals address both functional and non-functional properties of
web services to optimize the composition process. In this paper we outlined the main
challenges faced in semantic web services, i.e., dynamic composition and optimization
based on non-functional properties. To this end we described a framework for the func-
tional composition of web services. Starting from a service developer service request, we
successively apply web service discovery, causal link matrix computation, web service
composition and optimization based on non-functional properties of services. By com-
puting a causal link matrix, we ensure that the obtained compositions have valid semantic
connections between component web services. Finally, the set of valid service composi-
tions is selected by considering the non-functional properties of web services involved
in the composition. If a composition does not match the non-functional properties of the
service request, it is neglected. Our composition approach is quite general and can be eas-
ily applied to web services described using OWL-S (service profile), WSMO (capability
model) or SA-WSDL specification.

In future work, we intend to investigate how an approach based on process aspects
can be combined with the approach reported in this paper. This work should allow more
composition problems to be solved, increase the number of valid composition results and
improve the correctness of the composition process.

Acknowledgments. This work is supported by the European IST SPICE project (IST-
027617) and the Dutch Freeband A-MUSE project (BSIK 03025).

References
[1] Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web services: concepts, architectures and

applications. Springer-Verlag (2004)

[2] Brodie, M.L., Bussler, C., de Bruijn, J., Fahringer, T., Fensel, D., Hepp, M., Lausen, H., Ro-
man, D., Strang, T., Werthner, H., Zaremba, M.: Semantically enabled service-oriented archi-
tectures: a manifesto and a paradigm shift in computer science. Technical report, DERI (2005)

[3] Sycara, K.P., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction
and composition of semantic web services. J. Web. Sem. 1(1) (2003) 27–46

[4] Constantinescu, I., Faltings, B.: Efficient matchmaking and directory services. In: IEEE/WIC
International Conference on Web Intelligence. (2003) 75–81

[5] Constantinescu, I., Faltings, B., Binder, W.: Type based service composition. In: 13th Interna-
tional World Wide Web Conference (Alternate track papers & posters). (2004) 268–269

[6] Klusch, M., Fries, B., Khalid, M., Sycara, K.: OWLS-MX: Hybrid OWL-S service matchmak-
ing. In: First International Symposium on Agents and the Semantic Web. (2005)

[7] Paolucci, M., Sycara, K.P., Kawamura, T.: Delivering semantic web services. In: 12th Interna-
tional World Wide Web Conference (Alternate paper tracks). (2003) 829–837

[8] Sirin, E., Parsia, B., Hendler, J.A.: Filtering and selecting semantic web services with interac-
tive composition techniques. IEEE Intelligent Systems 19(4) (2004) 42–49



74 Lécu´´ e, Silva and Ferreira Pires´

[9] Berardi, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M.: Automatic compo-
sition of e-services that export their behavior. In: ICSOC 2003. LNCS, vol. 2910, Springer
(2003) 43–58

[10] Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach to design and
analysis of e-service composition. In: 12th International World Wide Web Conference, ACM
Press (2003) 403–410

[11] Narayanan, S., McIlraith, S.: Simulation, verification and automated composition of web ser-
vices. In: 11th International World Wide Web Conference, ACM Press (2002) 77–88

[12] Pistore, M., Roberti, P., Traverso, P.: Process-level composition of executable web services:
”on-the-fly” versus ”once-for-all” composition. In: ESWC 2005. LNCS, vol. 3532, Springer
(2005) 62–77

[13] Bertoli, P., Hoffmann, J., Lécu´´ e, F., Pistore, M.: Integrating discovery and automated compo-´
sition: from semantic requirements to executable code. In: IEEE International Conference on
Web Services. (2007) 815–822

[14] Lécu´´ e, F., L´´ eger, A.: A formal model for semantic web service composition. In: ISWC 2006.´
LNCS, vol. 4273 (2006) 385–398

[15] Cordier, C., Carrez, F., van Kranenburg, H., Licciardi, C., van der Meer, J., Spedalieri, A.,
Rouzic, J.P.L.: Addressing the challenges of beyond 3G service delivery: the SPICE platform.
In: 6th International Workshop on Applications and Services in Wireless Networks. (2006)

[16] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language for
web services, version 1.1 (2003)

[17] Smith, M.K., McGuiness, D., Volz, R., Welty, C.: Web Ontology Language (OWL) guide,
version 1.0. W3C. (2002)

[18] Ankolenkar, A., Paolucci, M., Srinivasan, N., Sycara, K.: OWL Web Ontology Language
guide. W3C. (2004)

[19] Fensel, D., Kifer, M., de Bruijn, J., Domingue, J.: Web service modeling ontology (WSMO),
W3C member submission (2005)

[20] Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding semantics to web services stan-
dards. In: 1st International Conference on Web Services. (2003) 395–401

[21] Kusters, R.: Non-Standard Inferences in Description Logics. LNCS, vol. 2100. SpringerK¨K
(2001)

[22] Russell, S., Norvig, P.: Artificial Intelligence: a modern approach. Prentice-Hall (1995)

[23] Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web services capa-
bilities. In: ICWS 2002. LNCS, vol. 2342, Springer (2002) 333–347

[24] Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web technol-
ogy. In: 12th International World Wide Web Conference, ACM Press (2003) 331–339

[25] Lécu´´ e, F., Delteil, A., L´´ eger, A.: Applying abduction in semantic web service composition. In:´
IEEE International Conference on Web Services. (2007) 94–101

[26] Lécu´´ e, F., L´´ eger, A.: Semantic web service composition through a matchmaking of domain.´
In: 4th IEEE European Conference on Web Services. (2006) 171–180

[27] Lassila, O., Dixit, S.: Interleaving discovery and composition for simple workfows. In: First
International Semantic Web Services Symposium. (2004)



A Framework for Dynamic Web Services Composition 75

[28] Mao, Z.M., Katz, R.H., Brewer, E.A.: Fault-tolerant, scalable, wide-area internet service com-
position. Technical Report CSD-01-1129, University of California at Berkeley (2001)

[29] Zhang, R., Arpinar, I.B., Aleman-Meza, B.: Automatic composition of semantic web services.
In: 1st International Conference on Web Services. (2003) 38–41

[30] Alfaro, L.D., Henzinger, T.A.: Interface automata. In: 8th European software engineering con-
ference / 9th ACM SIGSOFT international symposium on Foundations of software engineer-
ing. (2001) 109–120

[31] Sirin, E., Hendler, J.A., Parsia, B.: Semi-automatic composition of web services using seman-
tic descriptions. In: 1st Workshop on Web Services: Modeling, Architecture and Infrastructure.
(2003) 17–24

Freddy Lécu´´ e
France Telecom R&D
4 Rue du clos courtel
F-35512 Cesson Sévign´´ e
France
e-mail: freddy.lecue@orange-ftgroup.com

Eduardo Silva
Centre for Telematics and Information Technology
University of Twente
P.O. Box 217, 7500 AE Enschede
The Netherlands
e-mail: e.m.g.silva@ewi.utwente.nl

Luı́s Ferreira Pires´
Centre for Telematics and Information Technology
University of Twente
P.O. Box 217, 7500 AE Enschede
The Netherlands
e-mail: l.ferreirapires@ewi.utwente.nl



Whitestein Series in Software Agent Technologies, 77–95
©c 2008 Birkhauser Verlag Basel/Switzerland¨

Composite Web Services

Kung-Kiu Lau and Cuong Tran

Abstract. Currently, composition of web services is done by orchestration.
An orchestration is a workflow that combines invocations of individual oper-
ations of the web services involved. It is therefore a composition of individual
operations, rather than a composition of entire web services. In this paper
we propose a different approach to web service composition, whereby entire
services are composed into composite services. The latter are again entire web
services, that is, they can be further composed using our composition, or they
can be used in an orchestration. We show how these composite services can
be constructed hierarchically and used in practice.

Web service, composite service, service composition, component model

1. Introduction

In a service-oriented architecture [18], individual services are combined into a single
workflow that reflects the business process in question. Although services can be
defined in a general way, in practice the most widely used services are web services
[13, 2].

Currently, composition of web services is carried out by orchestration [14].
An orchestration is a workflow that combines invocations of individual operations
of the web services involved. It is therefore a composition of individual operations,
rather than a composition of entire web services.

In this paper, we propose a different approach to web service composition,
whereby entire services are composed into composite services. The latter are again
entire web services, that is they can be further composed using our composition,
or they can be used in an orchestration.

The key difference between our approach and web service orchestration lies in
the nature of a composite web service created by our approach. A composite service
has all its operations available for composition or orchestration. By contrast, in
an orchestration, only the chosen individual operations of the member services are
available for invocation. A composite service is a service, whereas an orchestration



78 Lau and Tran

is a workflow. By the same token, a composite service is also different from a
choreography [14] (which is defined on a chosen set of individual operations).

Another important feature of our approach is that composition is hierarchical.
This means that a composite service can be constructed step by step from sub-
services in a systematic manner.

Our approach is based on our component model [11, 10]. In our model, com-
ponents are built from computation units. These units provide operations but
do not invoke other units, and so behave like web services. Our components are
composed in a hierarchical manner by using special connectors, which we call ex-
ogenous connectors [11]. It is these connectors that make the difference between
our model and other component models, and the difference between our approach
to web service composition and current practice in web service composition.

2. Motivation

Currently, web service composition is done by orchestration [6]. A web service
orchestration is a coordination of web service invocations, and can be represented
by a workflow. It can therefore be defined as a function ORC with the following
type:

ORC : op× op · · · × op → wf (1)

where op is the type of operations in web services, and wf is the type of workflows
for invoking a set of such operations.

An orchestration is defined using workflow languages such as BPEL [3],
BPML [4] and XLANG [17]. A workflow in these languages can be converted
into a web service by giving it a WSDL [13] interface. The resulting web service
can then be orchestrated with other web services.

To motivate composite web services, in this section we use a simple example
to show how composition is different from orchestration.

Consider a bank system with just one ATM that serves two bank consortia
BC1 and BC2, each with two bank branches, B1 and B2, B3 and B4 respectively.
The ATM reads the customer’s card, performs a security check, identifies the
customer’s bank consortium and passes customer requests together with customer
details to the customer’s bank consortium. The customer’s bank consortium checks
customer details and identifies the customer’s bank branch, and then passes on the
customer requests and customer details to the customer’s bank branch. The bank
branch checks customer details and provides the usual services of withdrawal,
deposit, balance check, etc.

Suppose all the elements of the bank system are available as web services,
each providing appropriate operations. Then we can build a web service for the
bank system by orchestrating all these web services, and converting the resulting
workflow into a web service. For any particular orchestration, operations to be
invoked in the web services have to be chosen, and one specific corresponding
workflow is defined. Figure 1 shows one possible orchestration.



Composite Web Services 79

[c2]

[c1]

[w]

[d]

[w]

[d]

B1.dpp

B1.wdd[w]

[d]

B2.dpp

B2.wdd[w]

[d]

B3.dpp

B3.wdd

B4.dpp

B4.wdd
[c2]

[c1]

[c1]

[c2]

BC2.gbg

BC1.gbBC1.gb

ATM.pcATM.pc

Figure 1. Bank orchestration.

In this workflow, the operation pc (processCard) of the ATM is invoked to
identify the customer’s bank consortium. The operation gb (getBank) of bank con-
sortium BC1 or BC2 is invoked to get the customer’s bank branch. The operations
dp (deposit) or wd (withdraw) are invoked in the bank branches (B1, B2, B3 or
B4). This workflow can be converted into a bank web service that provides the
deposit and withdrawal operations.

Orchestration is not compositional with respect to the operations invoked.
That is, given an orchestration, it is not possible to add to its set of invoked
operations and hence its workflow. For example in Figure 1 it is not possible to
add an invocation of security check to ATM, or aMM balance check operation to the
bank branches. Any such change would require an entirely new orchestration.

This is true even if the orchestration is defined in a hierarchical workflow
language like YAWL [19]. Figure 2 shows how the bank system workflow in Figure 1
can be defined in YAWL.

[c2]

[c1]
B1.dpp

B1.wdd[w]

[d]

B2.dpp

B2.wdd[w]

[d]
BC1.gbBC1.gb

[c1]

[c2]

ATM.pcATM.pc
BC1

BC2

[c2]

[c1]
[w]

[d]

[w]

[d]
BC2.gbBC2.gb

B3.dpp

B3.wdd

B4.dpp

B4.wdd

Figure 2. Bank with nested workflows.



80 Lau and Tran

To add security checks to ATM, it would be necessary to change the top-levelMM
workflow. To add balance check to bank branches, it would be necessary to change
the sub-workflows for BC1 and BC2.

Of course in an orchestration, it is possible to include all the operations of all
the web services involved. However, such a workflow can potentially be very large,
complex and cumbersome. Furthermore, it will contain many redundancies and
repetitions because many sub-workflows are duplicated, as can be seen in Figures
1 and 2.

By contrast, we define a composite web service as a web service that is com-
posed from sub-services. A composite web service is not just one orchestration,
but is a web service that provides all the operations of all the sub-services, i.e. it
contains all possible orchestrations of these operations. For the bank system, the
composite service would have the workflow shown in Figure 3, where # denotes
a parameter. This workflow is parameterised over all the operations of every web
service involved.

ATM.#

BC1.#
B1.#

B2.#[c2]

[c1]

B3.#[c1]

B4.#
BC2.#

[c1]]

[c2]]

[c2]

Figure 3. Bank composite.

3. Web Service Composition

So we want to define web service composition differently from web service orches-
tration. In particular, we want to define it hierarchically, that is, we want to be
able to compose services into composite services, which in turn can be composed
into even bigger composite services. This is illustrated by Figure 4 where web ser-
vices W1 and W2 are composed into a composite service W5, and web services
W3 and W4 are composed into a composite service W6. W5 and W6 are in turn
composed into W7.

+ W6

W1 + W2 W3 + W4

W7

W5

Figure 4. Web service composition.



Composite Web Services 81

A composition can be defined as a function COMP with the following type:

COMP : ws× ws× · · · × ws → ws (2)

where ws is the type of web services.
The difference between orchestration and composition can be seen clearly

by comparing (1) and (2): an orchestration takes named operations (in the web
services involved) as arguments and returns a workflow (for the invocations of these
operations); whereas a composition takes web services and returns a (composite)
web service.

Our definition of web service composition is based on a component model
that we have defined [10], in particular composition in the design phase [9]. This
model defines what components are, as well as composition operators for them,
for different phases, namely design and deployment phases. We will show that our
model can serve as a component model for web services and their composition.

3.1. A Component Model for Web Services

In our model [10], components have the distinguishing features of encapsulation
and compositionality. Components are constructed from two kinds of basic enti-
ties: (i) computation units, and (ii) connectors (Figure 5). A computation unit
CU encapsulates computation. It provides a set of methods (or operations). En-
capsulation means that CU ’s methods do not call methods in other computation
units; rather, when invoked, all their computation occurs in CU. ThusUU CU could
be thought of as a web service.

There are two kinds of connectors: (i) invocation, and (ii) composition (Fig-
ure 5). An invocation connector is connected to a computation unit CU so as to
provide access to the methods of CU.UU

A composition connector encapsulates control. It is used to define and co-
ordinate the control for a set of components (atomic or composite). Composi-
tion connectors can be defined for the usual control structures for sequencing and
branching. A sequencer connector that composes components C1, . . . , CnCC can call
methods in C1, . . . , CnCC in that order. A pipe connector is similar to a sequencer,
but additionally passes the results of calls to methods in CiCC to those in CiCC +1. A se-
lector connector that composes components C1, . . . , CnCC can select one component
out of C1, . . . , CnCC and call methods in that component only. The control struc-
ture for looping is defined as iterators on individual composition connectors (and
invocation connectors, see below). Our composition connectors are thus a Turing
complete set [12, 5], for defining control flow.

Clearly composition connectors can define (and encapsulate) workflow for a
set of connected components. They can define workflow control-flow for sequencing,
branching and looping, as described in e.g. [20].

Components are defined in terms of computation units and connectors. There
are two kinds of components: (i) atomic, and (ii) composite (Figure 5). An atomic



82 Lau and Tran

(b) Composite component

cu2

Composition
connector

ic2

cu1

ic1

cc

C
om

positionality
Encapsulation
(computation and control)

connector

Computation
unit

Invocation

cu

Encapsulation
(computation)

(a) Atomic component

ic

Figure 5. Our component model.
component consists of a computation unit with an invocation connector that pro-
vides an interface to the component. An atomic component encapsulates computa-
tion (Figure 5(a)). A composite component consists of a set of components (atomic
or composite) composed by a composition connector. The composition connector
provides an interface to the composite. A composite component encapsulates com-
putation and control (Figure 5(b)).

An atomic component can thus be a web service, its invocation connector
being the WSDL interface. A composite component can be a (composite) web
service that contains sub-services as well as workflow between the sub-services. Its
top-level composition connector is its interface. However, this interface cannot be
described in standard WSDL since the web service now contains workflow (in the
composition connector).

Our components are also compositional, i.e. the composition of two compo-
nents C1 and C2CC yields another component C3CC . In particular, C3 also has the
defining characteristics of encapsulation and compositionality. Thus composition-
ality implies that composition preserves encapsulation (Figure 5(b)).

Encapsulation and compositionality lead to self-similarity of composite com-
ponents, as can be clearly seen in Figure 5(b). Self-similarity provides the basis
for a hierarchical way of composing systems from components.

Encapsulation and compositionality result form the nature of our connectors.
They are in fact exogenous connectors [11], and encapsulate control outside of
computation units in a system. Exogenous composition connectors are defined in
a hierarchical way. For example, a sequencer connector, or a pipe connector, that
composes two atomic components A1 and A2 is clearly defined in terms of the
invocation connectors in A1 and A2. In general, exogenous composition connectors
form a hierarchy built on top of invocation connectors for atomic components.
Connectors at level n for any n > 1 can be defined in terms of connectors at levels
1 to (n− 1). Indeed, exogenous connectors have a hierarchical type system [11].

The hierarchical nature of exogenous connectors entails a strictly hierarchical
way of constructing systems by composing components. In such a system, atomic
components form a flat layer, and the entire control structure (of composition
connectors) sits on top of this. The precise choice of connectors, the number of
levels of connectors, and the connection structure, depend on the relationship
between the behaviour of the individual components and the behaviour that the
whole system is supposed to achieve. Whatever the control structure, however, it



Composite Web Services 83

is strictly hierarchical, which means that there is always only one connector at the
top level. This is the connector that initiates control flow in the whole system.

As an example, the bank system can be constructed using our component
model as shown in Figure 6. P1, P2 and P3 are pipe composition connectors;

I7I5

BC2

I6

B3 B4

S2

P2P1

B1 B2B1B1B1ATM

I1

BC1

I3 I4I3I3I3I2

S3

P3

S1

Figure 6. The bank system.

S1, S2 and S3 are selector composition connectors; and I1 . . . I7 are invocation
connectors. The top-level connector P1 is the interface to the system, and is where
control flow starts.

4. Composite Web Services

Using our model as a component model for web services, we can use standard web
services as atomic components, composite web services as composite components,
and use the composition connectors1 as composition operators for web services.
This is illustrated in Fig 7, where two services W1 and W2 are composed by a
composition operator Comp into a composite service W3.

W2

Comp Composition operator

Web service

W3

W1

Figure 7. Composite web services.

W3 is a web service, just like W1 and W2. However, whereas W1 and W2
have interfaces described in standard WSDL, W3 has an interface that cannot
be described in standard WSDL, because W3 contains workflow embodied in the
composition operator Comp. Therefore, in order to define W3 as a web service,
we need to extend standard WSDL in order to incorporate workflow description.

1In the design phase.



84 Lau and Tran

S3

P3

P1

S1
BC1 B41 B2B1

S2

P2
C1 C3

C5

ATM

C4C2

C6

Figure 8. The bank composite web service.

Then we need to devise a method to generate its interface in the extended WSDL
from the standard WSDL interfaces of W1 and W2.

The bank system in Figure 6 can be built as a composite web service com-
posed from standard web services for ATM,MM BC1, BC2, B1, B2, B3 and B4 (Fig-
ure 8). The structure of this composite is of course identical to that of the bank
system in Figure 6.

The composition is hierarchical (composite services are denoted by dotted
boxes): B1 and B2 are composed into the composite service C1 by using the
selection connector S1 ; the composite C1 is in turn composed with BC1 using the
pipe connector P1, creating the composite C2 ; similarly B3 and B4 are composed
into C3 by using the selection connector S2 ; the composite C3 is then composed
with BC1 using the pipe connector P2, creating the composite C4 ; the composite
C2 is in turn composed with C4 by using the selector connector S3 to create the
composite C5 ; the composite C5 is composed with ATM by using another pipe
connector P3, creating the composite C6. The composite service C6 provides all
the operations offered by its sub-services.

4.1. Defining Composite Web Services

In order to define composite web services, we need to extend standard WSDL to
incorporate the workflow added by connectors in composition. To this end, we
define a new extensible element for WSDL documents, called workflow. It con-
tains child elements which describe the details of the workflow structure. The
extended WSDL document for a composite service consists of standard elements
such as types, messages, portType, binding and services, together with the addi-
tional workflow element, as shown in Figure 9.

Under the workflow tag, there are extensible tags describing workflow struc-
tures. We define such a tag for each of our composition connectors. The behaviour
of the connectors is defined by their implementation on the web server concerned.

The tag for each connector in turn contains child tags specifying the services
(and operations) involved. If a connector provides sequential invocation, e.g. se-
quencer and pipe, then the child tags describe the sequence of services involved.



Composite Web Services 85

<types> Data types
<message> Message structures
<portType> Provided operations and messages

<binding> Message exchange protocol
<service> Service name and address

<workflow> Workflow structure description and available operations

<definitions> Root element of WSDL document

Figure 9. An extended WSDL document.

If a connector provides a branching structure, e.g. selector, then the child tags
specify the branching condition and the corresponding services.

The schema for workflow consisting of pipe and selector connectors is depicted
in Figure 10. This workflow element has either a pipe or choice child element. Each

Figure 10. Schema for workflow and available operations.



86 Lau and Tran

contains a number of services (and operations). Furthermore, workflow structures
(pipe and choice) may in turn contain one another.

The pipe tag is used to represent the pipe workflow structure provided by
the pipe connector. The pipe connects a sequence of services specified by set tags,
or other workflow structures (pipe or choice). The pipe invokes every service, or
passes requests to structures, in the sequence. An invocation result is used as input
to the next invocation.

The choice tag represents the branching workflow structure embodied by
the selector connector. It contains a number of cases specified by the case tag. A
case is a combination of a matching condition and an operation set (i.e. service)
or another workflow structure. Different cases have different matching conditions.
The choice workflow invokes a service or a structure if the corresponding matching
condition is satisfied.

As an example, the workflow description for the composite bank service in
Figure 8 can be described by the following outline:

<workflow>
<pipe> <set name="ATM">

<operation name="procCard">...</operation>
</set>
<choice>
<case condition="1">
<pipe>
<set name="BC1">
<operation name="getBank">...</operation> </set>

<choice>
<case condition="1"><set name="B1">
<operation name="withdraw">...</operation>
<operation name="deposit">...</operation> ...</set> </case>

<case condition="2">
<set name="B2">
<operation name="withdraw">...</operation>
<operation name="deposit">...</operation> ...</set></case>

</choice></pipe></case>
<case condition="2">
<pipe>
<set name="BC2">
<operation name="getBank">...</operation> </set>

...

The intended meaning of this workflow is that it first invokes any operation
of ATM, and pipes the result to the branching structure; if the result is 1, then
any one of BC1’s operations can be invoked or if the result is 2 then any one of
BC2’s operations can be invoked; the result of BC1’s operation is used to compare
with the branching condition; if the value is 1, then any one of B1’s operations can
be invoked, or if the value is 2, then any one of B2’s operations can be invoked.
Similarly the result of BC2’s operations is used in comparison with branching
condition; if the condition is 1 then any one of B3’s operations or B4’s operations
will be invoked. After that, the workflow ends and the result of the last invocation
is returned.



Composite Web Services 87

4.2. Implementing Composite Services

Given the extended WSDL document for a composite service, we need to imple-
ment the service on a web server. This implementation consists of the implemen-
tation of the intended behaviour of the workflow defined in the extended WSDL
document, as well as the implementation of the interface of the composite service,
also defined in the extended WSDL document.

For every composition connector, we need to implement its workflow defining
its intended behaviour. To this end, we implement our connectors as Java classes
which are stored as templates. Every time we use connectors to create composite
services, these templates are used to generate real Java classes.

In general, for a composite service, the Java class for the top-level connector
always has one operation invoke, that is the operation provided by the compos-
ite service to the outside world. Clients use a composite service via its invoke
operation. Depending on the behaviour of each connector, the invoke operation
may have different signatures. Basically, the signature of invoke comprises three
main elements, viz. condition, operation names and operation parameters. The
condition is used in a branching workflow structure for selecting sub-services. Op-
eration names indicate which operations of the selected sub-services are invoked.
Operation parameters are parameters passed to the invoked operations. Also, the
signature of invoke includes the results returned by the composite.

The signature of invoke is reflected in the definitions of types, messages and
portType of the extended WSDL document for a composite service. We implementff
message exchange style as RPC, and transport as SOAP over HTTP, in the popular
manner. This information is contained inside the binding section of the extended
WSDL document. The composite service address is specified at design time and
contained in the service section.

The Java classes for connectors after generation are compiled and deployed
to a web service engine, which is Axis [1] in our implementation. We now show
our implementation for the pipe and selector connectors. For simplicity, our imple-
mentation only deals with parameters of primitive data types, e.g. string, integer,
float, etc. We use String as intermediate type because other primitive types can
be converted to String and vice versa.

The Pipe class template has one method:
invoke(String[] methods, String[] params);

The pipe connector receives a list of operations and a list of parameters for
these operations. The invoke method is used to sequentially call every operation
in the list. Each operation is provided by a sub-service.

If a sub-service is standard service, the connector identifies the number of
parameters for every operation so that the parameters can be taken out of the
parameter list and passed to the operations invoked. The connector also does type
conversion for parameters if the invoked operations use primitive types different
from String. If it is at the beginning or the middle of the operation list, the result
of an invoked operation will be inserted into the first position of the parameter



88 Lau and Tran

list for subsequent operation invocations. Otherwise, the result is returned as the
output of the composite. The completed operation and used parameters are thus
removed from the operation and parameter lists.

If a sub-service is a composite service, the connector just passes the whole
operation list at that point to the invoke operation of the sub-service. However, if
the (composite) sub-service has a branching structure, then the connector extracts
the first element of the parameter list before passing a call to the sub-service
operation.

The definitions of types, messages and portType of the extended WSDL
document for composite services having a pipe as the top-level connector look like
the following:
<wsdl:types>
<schema targetNamespace="urn:cbsd" .../>
<complexType name="ArrayOfString">
<sequence><element name="item" type="xsd:string"/>
</sequence></complexType></schema>...</wsdl:types>

<wsdl:message name="invokeRequest">
<wsdl:part name="operations" type="ArrayOfString"/>
<wsdl:part name="params" type="ArrayOfString"/> </wsdl:message>

<wsdl:message name="invokeResponse">
<wsdl:part name="result" type="xsd:string"/> </wsdl:message>

<wsdl:portType name="...">
<wsdl:operation name="invoke" parameterOrder="operations params">
<wsdl:input message="invokeRequest".. />
<wsdl:output message="invokeResponse".../> </wsdl:operation></wsdl:portType>

ArrayOfString is not a primitive data type, so we need to define it in the
extended WSDL document. The invoke operation has the input message invok-
eRequest consisting of two arrays of string containing the operation and parameter
lists. The output message invokeResponse contains the result of the invoke oper-
ation.

The Selector class template also has just one method:
invoke(String condition, String[] operations, String[] params);

Like the pipe connector, the selector connector receives a list of operations
(provided by the sub-services) and a list of parameters for these operations. In
addition, it also receives a condition for selecting one of the sub-services. The
invoke method is used to call one operation in the selected sub-service, i.e. one
which matches the condition passed to the method. If the selected sub-service is
a standard service, when the selector selects whichever operation, it will identify
the number of parameters and their types for the selected operation, extract pa-
rameters from the parameter list, convert to appropriate types if needed, and pass
the extracted parameters to the selected operation. The result of the selected op-
eration is the output of the composite. If the selected sub-service is a composite
service, the connector will extract the first parameter from the parameter list, and
put it together with the operation and parameter lists into a call to the invoke
operation of the selected sub-service.



Composite Web Services 89

The definitions of types and output message of the extended WSDL docu-
ment for composite services having selector as the top-level connector are similar
to those for pipe connector. However, the invoke operation of selector has a dif-
ferent signature (with the addition of condition), which affects input message and
portType definitions. These definitions are as follows:
...
<wsdl:message name="invokeRequest">
<wsdl:part name="condition" type="xsd:string"/>
<wsdl:part name="operations" type="impl:ArrayOfString"/>
<wsdl:part name="params" type="impl:ArrayOfString"/></wsdl:message>

...
<wsdl:portType name="...">
<wsdl:operation name="invoke" parameterOrder="condition operations params">
<wsdl:input message="impl:invokeRequest".../>
<wsdl:output message="impl:invokeResponse".../>

</wsdl:operation> </wsdl:portType>

The binding and service sections for composite services are shown below:
<wsdl:binding name="..." type="...">
<wsdlsoap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="invoke"> <wsdlsoap:operation soapAction=""/>
<wsdl:input name="invokeRequest">
<wsdlsoap:body encodingStyle="..." namespace="urn:cbsd"
use="encoded"/></wsdl:input> <wsdl:output name="invokeResponse">

...
<wsdl:service name="..."> <wsdl:port binding="..." name="...">

<wsdlsoap:address location="http://server/composite_service"/>
</wsdl:port></wsdl:service>

As mentioned before, the message exchange style is RPC, and the transport
is SOAP over HTTP.

4.3. Tool Support

To support our approach to service composition, we have implemented a tool. The
tool can be used by a service designer to construct a composite web service, and
also by a client to invoke a composite web service.

Figure 11. Construction process.

The process of creating composite services with our tool is illustrated in
Figure 11. We start with WSDL documents of standard web services, or extended
WSDL (WSDL’ in Figure 11) documents for composite services as inputs. The
tool generates Java classes and the associated extended WSDL document for the
resulting composite service. The Java code of the composite service is compiled and
the binary is deployed on to the web service engine. This construction process can



90 Lau and Tran

be applied hierarchically, by building (composite) services and composing them
successively.

Figure 12. Composite service designer tool.

Figure 12 shows a screen shot of our tool being used to create a composite
service. Through the user interface, the tool allows the service designer to choose
WSDL or extended WSDL files as its input. The designer can also choose a desired
connector, give a name to the composite service, assign composite service address,
and specify the directory for the generated code.ff

The example in Figure 12 shows the creation of the composite web service C1
by composing two standard web services B1 and B2 using a selector connector.
The composite service address is http://server/services/C1. The composite
service Java code is generated and compiled. The composite service in binary is
deployed to the server at the directory c:\tomcat-axis\webapps\...\classes\.

Figure 13 shows a screenshot of our tool being used by a client to invoke a
composite service. Our tool allows clients to input a composite service description
file (WSDL’ file). The tool then draws a diagram of the workflow structure em-
bodied in the composite service. The client clicks at each activity in the diagram
and chooses one operation to be invoked. Based on the chosen operations, our tool
generates the syntax for client calls to the composite service.

The example in Figure 13 shows a client using our composite bank service.
The client can see the workflow embodied in the service, chooses the operation
withdraw of the bank branch, and clicks the Generate button. The tool then shows
the syntax to invoke the composite bank service, and the code for this invocation
is also generated in a directory.



Composite Web Services 91

Figure 13. Composite service client tool.

5. Discussion

The key difference between composition and orchestration lies in the nature of a
composite web service created by our approach. A composite service has all its
operations available for composition or orchestration. By contrast, in an orches-
tration, only the chosen individual operations of the member services are available
for invocation. Because it contains a workflow structure, a composite service can
specify many different business logics involving the operations of its sub-services.
In other words, a composite service contains many workflows, whereas an orches-
tration defines just one.

Our approach is distinctive compared with other current approaches. Our
composite service now is truly a composite which captures entire element ser-
vices and composite exists at every composition. Composite service is constructed
by using our special connector as composition operators. Moreover, composite has
separation between invocation control structure (given by connector). and services.
This leads to our approach brings up some strong benefits. Because composition
is fundamentally different from orchestration, our approach is novel. For prac-
tical purposes, we believe our approach also has some advantages over current
approaches to web service orchestration.

First, our approach eases the creation of composite services. Developers need
only focus on building up a structure of available services. Composition does not
involve fixed operations. By allowing parameterisation of operations to be invoked,
it enables clients to choose the operations based on their business logic. Thus, a
composite service, once built, can be used in many different applications. In our
example, the composite bank service C6 can allow multiple applications.



92 Lau and Tran

The second benefit of our approach is the reduction in effort of creating and
maintaining web service orchestrations that belong to the same composite. Instead
of incurring cost for creating and keeping separate multiple workflows working,
developers of applications can just use an appropriate composite service which
is already constructed to fulfil their needs. For example, in our bank composite,
only the parametric workflow needs to be maintained, instead of the individual
workflows that it contains. Thus our approach minimises the maintenance problem
as maintenance only happens on the composite service, and the client need not
change the code of his application for each business logic embodied in the composite
service.

The third benefit is the hierarchical manner of building composite services.
After every composition at every level of the whole system, there exist composite
services. These individual composite services can be used separately by other ap-
plications. For instance, in the bank example, two composites C2 and C4 could be
used in an application involving multiple bank consortia. In this case, C6 would
allow customers belonging to multiple consortia to use its sub-services. Another
benefit is easing service composition maintenance. Thanks to the hierarchical na-
ture of our composition approach, if one sub-service has changed its location, only
one composite service containing this sub-service is affected. The composite can
be updated locally by its developer and the change can happen without requiring
updates to other related services. For instance, in the bank example, if B1 changes,
then only C1 is affected.

Finally, as mentioned before, our composite service is still a web service.
Thus it can be used in orchestration. As shown in the previous section, our tool
allows a composite service to be invoked, yielding a workflow. However, our tool
is not yet integrated with standard orchestration tools. For such an integration we
need to extend existing workflow designer tools such as Eclipse-BPEL. Such a tool
would combine a standard WSDL processor with a processor for extended WSDL
as defined in Section 4.1. Our tool can provide the processor for extended WSDL,
and we are currently working on its integration with Eclipse-BPEL.

6. Related Work

Although orchestration and choreography are related to our work, we have already
pointed out that our approach is fundamentally different. In orchestration, an
orchestration language, such as BPEL [3], is used for defining executable workflows
in XML-based format, consisting of series of activities. Every activity requires
a particular service operation as input. The workflow can be deployed onto a
workflow enactment system, such as the BPEL engine, which manages the workflow
execution. However, existing orchestration languages like BPEL and YAWL [19]
cannot describe parametric workflows as embodied in our composite web services.

Choreography focuses on describing interactions between services by spec-
ifying operations in structures such as sequence, choice, etc., using a language



Composite Web Services 93

like WS-CDL [8]. The approach still explicitly requires specific operations to be
named in the choreography document. Furthermore, choreography of services does
not result in a service which can be executed.

Aspect-oriented Web Service (AOWS) [7, 16] is web service based on AOCE
(Aspect-Oriented Component Engineering). A service is enriched with an aspectual
description which supports automated service discovery. This approach uses an
AOConnector object which serves as a gateway to a client. The connector receives
client requests and relays them to an appropriate AOWS. Their connector is unlike
our composition connector because it does not define a workflow structure, and
using their connector on an AOWS does not produce a service.

Web Transact [6, 15] is a framework for providing transactional features to
service composition. It suggests to compose web services in hierarchical architec-
tures. Standard web services providing similar functional capabilities are bundled
using the mediator pattern to create mediator services. Mediator services are later
composed to create composite services by using WSTL (Web Service Transaction
Language) to specify the execution sequence of specific mediator service opera-
tions. Thus, a composite service in this approach still involves invocation of specific
operations. Also, a composite does not exist at every level of composition, unlike
our approach. Therefore we believe their approach is not hierarchical.

7. Conclusion

We have presented a new approach for web service composition using exogenous
connectors as composition operators on web services. The composite service cap-
tures all the operations provided by the sub-services, and it allows the operations
to be invoked in a defined workflow structure. A composite service thus represents
a rich service, giving clients a choice of many operations. Our approach appears
to have benefits compared with current approaches, especially orchestration.

In future, we plan to work on outstanding issues such as complex data struc-
ture manipulation in service communication, and error propagation among com-
posite services.

In addition, it will be interesting to test the practicality of our approach,
with regard to SOAs for larger real-world applications. To this end, we will need
to investigate how to publish composite services in a suitable registry, along the
lines of UDDI [13].

References

[1] Axis - web services framework web site. http://ws.apache.org/axis/.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Archi-
tectures and Applications. Springer-Verlag, 2004.



94 Lau and Tran

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weeragwarana. Business process
execution language for web services - version 1.1. Technical report, IBM, 2003.

[4] A. Arkin. Business process modeling language. Technical report, BPMI Organisation,
2005.

[5] C. Böhm and G. Jacopini. Flow diagrams, Turing machines and languages with only¨
two formation rules. Comm. ACM, 9(5):366–371, 1966.

[6] S. Dustdar and W.Schreiner. Survey of web service composition. Int. J. Web and
Grid Services, 1(1):1–30, 2005.

[7] J. Grundy, T. Panas, S. Singh, and H. Stockle. An approach to developing web
services with aspect-oriented component engineering. In In Proceedings of the 2nd
Nordic Conference on Web Services, 2003.

[8] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web services
choreography description language version 1.0. Technical report, W3C, 2004.

[9] K.-K. Lau, L. Ling, and Z. Wang. Composing components in design phase using ex-
ogenous connectors. In In Proc. 32nd Euromicro Conference on Software Engineering
and Advanced Applications, pages 12–19, 2006.

[10] K.-K. Lau, M. Ornaghi, and Z. Wang. A software component model and its pre-
liminary formalisation. In F. de Boer et al., editor, Proc. 4th Int. Symp. on Formal
Methods for Components and Objects, LNCS 4111, pages 1–21. Springer-Verlag,
2006.

[11] K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors for software
components. In G. Heineman et al., editor, Proc. 8th Int. Symp. on Component-
based Software Engineering, LNCS 3489. Springer, 2005.

[12] D. Le Métayer, V.-A. Nicolas, and O. Ridoux. Exploring the software development´
trilogy. In IEEE Softw., volume 15, pages 75–81, 1998.

[13] E. Newcomer. Understanding Web Services: XML, WSDL, SOAP, and UDDI.
Addison-Wesley, 2002.

[14] C. Peltz. Web services orchestration and choreography. Computer, 36(10):46–52,
2003.

[15] P. Pires. Webtransact: A framework for specifying and coordinating reliable web
services compositions. Technical report, Federal University of Rio De Janeiro, 2002.

[16] J. Hosking S. Singh, J. Grundy and J. Sun. An architecture for developing aspect-
oriented web services. In Proceedings of European Conference on Web Services,
Vaxjo, Sweden, 2005.

[17] S. Thatte. Xlang: Web services for business process design. Technical report, Mi-
crosoft, 2001.

[18] E. Thomas. Service-Oriented Architecture: Concepts, Technology, and Design. Pren-
tice Hall, 2005.

[19] W. van der Aalst, L. Aldred, M. Dumas, , and A. ter Hofstede. Design and implemen-
tation of the YAWL system. In 16th Int. Conf. on Advanced Information Systems
Engineering, 2004.

[20] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow pat-
terns. In Distributed and Parallel Databases, pages 5–51, 2003.



Composite Web Services 95

Kung-Kiu Lau
School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom

e-mail: {kung-kiu}@cs.man.ac.uk
Cuong Tran
School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom

e-mail: {ctran}@cs.man.ac.uk



Whitestein Series in Software Agent Technologies, 97–109
©c 2008 Birkhauser Verlag Basel/Switzerland¨

On the Management Requirements of Web
Service Compositions

Anis Charfi, Rainer Berbner, Mira Mezini and Ralf Steinmetz

Abstract. Several works have addressed the management of individual Web
Services. However, the specific management requirements of workflow-based
web service compositions such as those specified in the WS-BPEL have not yet
been considered. In this paper, we present several management requirements
in web service compositions such as discovery and selection management, SLA
and policy management, middleware services management, and management
of the composite service. Supporting these requirements is crucial for pro-
viding a reliable service composition with well-defined QoS properties. We
also introduce web service composition management and present our vision
of having dedicated tool support for it in future WS-BPEL engines.

1. Introduction

Web services [3] that are provided by different parties can be composed to cross-
organizational workflows and to value-added composite web services. Web service
composition languages such as WS-BPEL (Web Services Business Process Execu-WW
tion Language) [4] provide a cheap means for enterprise application integration
and business-to-business integration. However, we notice that whilst web service
based workflows cover the functional part of the composition (control flow, data
flow, etc), the management of Quality of Service (QoS for short) properties in
these compositions such as performance, availability, security, and reliability have
not yet been addressed appropriately. On the other hand, research has revealed
that the basic web service protocol stack is not sufficient to establish web services
in real-world scenarios [2] and that considering QoS requirements is crucial for a
sustainable success of web services [6] including their compositions. In fact, with-
out any guarantee regarding QoS, no enterprise will be willing to rely on external
web services within critical business processes.



98 Charfi, Berbner, Mezini and Steinmetz

In this paper, we look at several management requirements in the lifecycle
of web service compositions, which are mostly not supported by current composi-
tion tools. We also define web service composition management (WSCM) as the
management of the composite web service, the composition-side management of
the composed services, and the management of the interactions that take place
within and with the composition including their QoS properties. The definition
of WSCM is not specific to WS-BPEL but it works also with other composition
languages. We merely assume the use of a workflow-based language to compose
services that are described in terms of functionality and in terms of QoS. We will
focus on WS-BPEL because it is the standard for web service composition.

It is important to note that WSCM is different from web service management
because most existing works on web service management operate at the interface
level, i.e., on top of WSDL [1, 21, 23]. We look at the management requirements
of web service based workflows from the implementation perspective, i.e., the per-
spective of the user who defines and deploys such workflows. Thus, web service
composition management is a form of application level management, whereby the
application is implemented in a workflow language such as WS-BPEL.

The contribution of this paper is two-fold. First, it outlines management con-
cerns that are crucial but mostly not supported in current web service composition
tools. Second, it defines WSCM and explains how it differs from web service man-
agement in general. Our vision is that future orchestration engines should provide
WSCM capabilities. Implementing the WSCM requirements is out of scope.

The remainder of this paper is organized as follows. Section 2 gives some
background knowledge. Section 3 outlines the management requirements in web
service based workflows and defines web service composition management. In Sec-
tion 4, we report on related work. Section 5 concludes the paper.

2. Background

In this section, we provide some background knowledge that is relevant for under-
standing web service composition management.

2.1. Web Service Management and Web Service Composition

In Web Service Distributed Management (WSDM) OASIS developed a specifica-
tion called Management of Web Services (MOWS) [21], which defines an additional
management interface of a web service. The management interface provides infor-
mation about the identity, operational state, request processing state, etc.

In [21] Web Service management is defined as an extension of enterprise ap-
plication management. Following this definition, web service management has two
sides: management of applications within an enterprise (internal management) and
management of relationships with other web services across enterprises (external
management). This distinction aims at the management of web services.

Web service composition provides a means to create a value-added web service
by combining existing web services. WS-BPEL 2.0 [4] is a process-oriented web



On the Management Requirements of Web Service Compositions 99

service composition language, in which a composite web service is implemented
using a workflow process. The main concepts in WS-BPEL are partners, variables,
and activities. The partners are the parties that the composite web service inter-
acts with such as clients and other web services. The variables act as containers
for the data that is exchanged between the partners as well as for the process
data. The activities are the units of work in the process. WS-BPEL differenti-
ates primitive activities and structured activities. Primitive activities are atomic
whereas structured activities are composite. The core of a WS-BPEL process is
the set of atomic messaging activities (e.g., receive, reply, invoke), which perform
interactions between the partners. Structured activities such as sequence and flow
contain other activities, structuring the latter according to control flow patterns.

2.2. Service Level Agreements and Policies

Service Level Agreements (SLAs) are bilateral contracts and defined in RFC 3198
[25] as the documented result of a negotiation between a customer and a provider
of a service that specifies the levels of availability, serviceability, performance,
operation or other attributes of the service. An SLA contains a Service Level
Specification (SLS). An SLS is a set of parameters (e.g., availability, performance,
and error rate) and their values which together define the service offered to the
customer. Besides the SLS, an SLA can contain pricing information, contractual
information, etc. To model SLAs, we use IBM’s Web Service Level Agreement
(WSLA) framework [1]. WSLA is based on XML Schema and it is divided in three
parts. In the section Parties, the organizations involved are described. Relevant
parameters and the way how they are calculated are illustrated in the section
Service Descriptions. In the section Obligations, Service Level Objectives (SLOs)
are used to define criteria that have to be met by the provider.

Other QoS properties such as reliable messaging, security, and transactions
are not supported by SLAs but rather by policy based languages. WS-Policy [16]
is a general model and XML-based syntax that can be used to express the require-
ments, capabilities, and preferences of web services e.g., with respect to security
(as in WS-Security [20]). A policy is a collection of assertions. There are several
domain-specific assertion languages, e.g., WS-SecurityPolicy [10] defines security
assertions for integrity, confidentiality, etc.

3. Web Service Composition Management

We assume that we are building a composite service using a workflow-based web
service composition language by orchestrating existing web services that are de-
scribed not only in terms of their functionality (as supported by WSDL) but also
in terms of QoS (as supported by SLAs and policies). Further, we assume that
we have some requirements on the composite web service in terms of the QoS
properties that it will guarantee to its clients.



100 Charfi, Berbner, Mezini and Steinmetz

3.1. Requirements for Web Service Composition Management

We grouped several management requirements that arise when creating and de-
ploying web service compositions into the following categories:

3.1.1. Discovery and selection management. Service composition is generally used
to solve a complex problem or implement a complex business process. The com-
plex task of the composite web service is divided into smaller tasks that can be
performed by existing services.

Discovery Management is about finding appropriate web services to build the
composite web service. This activity takes place primarily at design time but can
also take place at runtime. Depending on the type of service to be used, discovery
is done in various ways. For instance in the case of business-to-business integration
the partner organizations tell each other about the services they expose. In the
case of enterprise application integration the system administrator of the enterprise
knows about the services that wrap a certain application. In other cases, partner
web services are discovered by searching internal and external UDDI registries. A
prerequisite for an appropriate discovery is a sufficient description of the services.

At first, the discovery management component of the web service composi-
tion tool has to consider the functionality (business match) and find web services
that match the port type of each partner. The business match is based only on
the syntax and it can be improved by using some semantic web services technol-
ogy. Besides the functional match, the non-functional properties of a web service
are another important criterion in web service discovery. For describing the non-
functional QoS criteria of web services, SLAs and policies are the mostly used
means. Such QoS descriptions allow the selection of a particular web service to be
driven by QoS concerns.

When creating a new web service it is often the case that there are certain
QoS requirements on that new service. For instance, the creator of the composite
service may require a response time of 2 ms to be guaranteed. Inferring QoS criteria
for the individual services to be composed in terms of their SLAs and policies is
a complex task that requires tool support. Another example is that the creator of
a composite web service may have some transaction requirements that need to be
translated to requirements on the individual web services. In the case of WS-BPEL,
the programmer may specify that a certain sequence with nested invoke activities
has to be transactional (e.g., using a deployment descriptor [9] or policies that are
attached to the process [7]. In such a case, appropriate tool support is required to
restrict the selection of partners to web services with transaction support.

In other scenarios, the discovery and selection of partners may pose certain
non-functional requirements on the composite service. For instance, assume that
we build a service in an intra-organizational setting, which provides one operation
that checks for product availability and places an order if the required product is
available. If the applications wrapped up by the availability service and the order
service require authentication it is then necessary to make the composite service



On the Management Requirements of Web Service Compositions 101

require authentication as well to have the authentication data that will be passed
to each composed service.

In addition to the static specifications of QoS properties, the history, i.e., the
runtime behavior, of a web service is sometimes necessary for the selection. For
instance, if the SLA of some service specifies an availability of 80% then selection
management has to gather information about each call, i.e., it has to record the
runtime behavior of web services to decide which web service should be invoked.
Therefore, the history of web services executions should be stored in a database.
Selection based on SLAs, policies, and history can be combined.

3.1.2. Management of the composite web service. In several composition lan-
guages including WS-BPEL, the composition is exposed as a new web service,
which needs to be managed. Typical management concerns in web services are
lifecycle management, the startup and the shut down of the service, the number of
instances, the ability of the service to provide information about itself, its identity,
its current load, the number of messages it is currently processing, its dependen-
cies on other services, error handling, forwarding of errors to some third party, etc.
Since the composite web service is implemented using a workflow process (e.g., a
WS-BPEL process) we need to understand what does each management concern
means in terms of constructs of the workflow language, e.g., what is the relation-
ship of service instances to process instances what is the number of messages the
composite service is processing at a certain point in time.

As the lifecycle is rather implicit in WS-BPEL, when we deploy a process
we start the composite service but the process might have not started yet. The
service can be shutdown by undeploying the process. Moreover, the current load
of the composite service can be inferred from the number of process instances.

Fault handling is another important management issue in composite web ser-
vices, e.g., if an error occurs during the execution of an operation of the composite
service, it is important to identify the source of that error (whether it is a process
error, an error in one of the composed services, an error in the client messages,
a network error, etc). Some kind of process debugger (i.e., a tool that shows the
execution state of each process instance and the values of each variable) would be
very helpful to identify the source of the fault so that the user can fix it and then
redeploy the process.

To establish a reliable composition several QoS properties of the composite
web service have to be addressed such as:

• Availability: Availability of a composite web service means the probability
that all web services involved in the composition are available when invoked
by the workflow process. A web service is considered available if it is able to
respond to a request within a defined time interval.

• Performance: It can be measured by the throughput and the response time.
Throughput means the number of requests that can be processed during a
defined time slot. In the case of WS-BPEL processes throughput depends not
only on the number of process instances that can run simultaneously but also



102 Charfi, Berbner, Mezini and Steinmetz

on the number of messages that one process instance can consume and on
whether BPEL-specific concepts such as message correlation are used. In fact,
the same process instance with correlation may be able to process multiple
client requests (e.g., one for logging in, one for searching for a product, one
for placing an order, etc).

The response time is the sum of transmission time and processing time
and can be measured as the time for processing a request. In WS-BPEL the
processing time is the period from the point where a SOAP message with a
matching receive arrives at the engine to the point where a response SOAP
message matching the same operation is sent using a reply activity.

One major challenge in composition management is performance mod-
eling and performance measurement of the composite service [12]. To analyze
composite services and plan the workflow control, network calculus can be
used to describe the worst-case performance behavior of a composite service.
By addressing capacity planning, resource usage becomes more and more im-
portant. Performance modeling and measurement are crucial to ensure that
the execution of the composite service remains feasible and SLA violations
due to overload are avoided.

• Error rate: The error rate specifies the number of processing errors within a
particular time interval. The error rate of the composite web service can be
calculated based on the error rates of each partner web service whilst taking
into account the number of interactions with each partner. When we define
the error rate for a composite service that is implemented in WS-BPEL, we
have to differentiate errors that are generated by the process, errors that are
thrown by partner services using fault messages, errors caused by faulty client
messages, and errors due to network failures.

In addition, other QoS properties of the composite web service have to be
managed such as security, reliable messaging, and transactions (cf. Section 3.1.4).

3.1.3. SLA and policy management. After the selection phase, we have a required
policy (resp. SLA) for each partner (that was probably inferred from the non-
functional requirements on the composite service) and a published policy (resp.
SLA) for the selected service.

Moreover, the composite Web Service may have two different policies: one
that is published to clients (server-side policy) and another that is used for in-
teractions with the composed services (client-side). As the partner services may
specify options in their policies, e.g., that they support either algorithm a or b
for encryption, policy management should allow the process deployer to specify
parameters that drive the decision on which option to choose. When such a client-
side composition policy exists an effective policy [16] has to be calculated using
that policy and the published policy of the partner service.

SLA and Policy management is about handling all these SLAs and policies
of the partner services and the composite service. Ideally, one would like to see a



On the Management Requirements of Web Service Compositions 103

list of policies (required, published, effective) and SLAs (required, published) for
each composed service and each interaction.

SLA Management should also monitor the composite service to check if the
originally defined SLA is supported. It may turn out that this SLA should be
modified after a certain period of time (e.g., because of the performance of a
partner service that cannot be replaced, e.g., when that service is a wrapper around
an internal application). Further, the SLA descriptions of the selected partner
services have to be monitored from the composition side by collecting execution
data for each interaction with that service to check whether the SLA was violated.

In addition, some means are needed to define how the composition runtime
should behave in the case of SLA violation (e.g., notification of service provider and
service consumer, sending an e-mail to an administrator, selecting an alternative
service and in that case what selection strategy to follow, etc)

Based on SLAs, rankings for partner web services can be calculated for each
service category (e.g., delivery web service) [6, 5]. This ranking can be later used
as a foundation for the dynamic selection of a particular web service. Furthermore,
IT experts can define additional rules to exclude web services that do not satisfy
certain minimal QoS requirements.

3.1.4. Management of middleware concerns. There are several middleware re-
quirements in web service compositions [9], which can be supported by WS-*
based middleware services for security, transactions, reliable messaging, etc. Due
to place limitations we focus only on security as a representative for the other
middleware services.

Several security concerns arise in a composite web service such as the au-
thentication of the composition in front of its partner services. Appropriate tool
support is needed to specify the data (e.g., user name and password, binary keys)
that should be passed to the security middleware before interacting with a partner.
The security middleware will then use that data to process the SOAP message ac-
cording to the WS-* specifications for security such as WS-Security and WS-Trust.

There are also confidentiality and integrity requirements for the interactions
with partners that can be enforced using a WS-Security based middleware service.
As there is a relationship between the security properties of an interaction and the
security policies of the involved parties, the management of middleware concerns
is related to policy management.

The composite web service could also have authentication requirements on its
clients, i.e., it mandates incoming client requests to provide some claims; messages
without appropriate user claims will be ignored. This can be the case when the
client has to pay a fee for using the service. Authentication is then used to associate
a contract (including a pricing model) with the client. There are further security
issues such as trust, federation, secure conversations, and privacy that need to be
managed and configured, e.g., if some of the partner services can be grouped into
a trust domain, then the process would not have to authenticate itself separately
in front of each partner (i.e., some kind of single sign-on can be introduced).



104 Charfi, Berbner, Mezini and Steinmetz

There are other middleware concerns in service compositions such as persis-
tence, transactions, and notification, etc. For each concern, tool support is needed
to define the middleware properties of each interaction (i.e., messaging activity
in WS-BPEL) and also of other activities (e.g., a transactional sequence in WS-
BPEL) as well as the parameters to enforce these properties.

3.1.5. Management of business aspects. Several business aspects have to be dealt
with in Web Services such as enforcing legal contracts between the partners, ac-
counting, billing, etc. Accounting is the process of tracing information systems
activities to a responsible source [11] usually conducted by the service provider as
a foundation for charging and billing. In the context of web service composition,
there are two forms of accounting (as being the provider of the composite web
service, and as being the client of the partner web services). Logging and trac-
ing are accounting activities with the purpose of keeping track of which requests
and responses have been sent to or received from clients and partner web services
including the respective data.

Billing is concerned with the bills that should be given to the clients of the
composite service and also the bills between the composition and the composed
services. The composition may have to pay a fee for using a partner web service
based on different pricing models, i.e., pay-per-use or volume-based rates. At the
composition side, the management module should collect the necessary statistics
about the usage of partner web services. This can be helpful to assign costs to
internal business units according to the cause of the costs. Additionally, the service
requester (i.e., the composition) can make use of accounting information to check
the provider’s invoice. Since the composition itself is a web service, which could
charge clients a fee also according to various pricing models, the management
module should correlate contracts and usage statistics to produce a bill.

3.2. Definition of Web Service Composition Management

We define Web Service Composition Management (WSCM) as the management
of the composite Web Service, the composition-side management of the composed
services, and the management of the interactions that take place within and with
the composition including their QoS properties. In a broader sense, it includes the
supporting activities that are needed to provide a reliable Web Service compo-
sition with well-defined QoS properties such as a) the discovery and selection of
appropriate services to build the composition, b) the management of interactions
with and within the composition in terms of SLAs, policies, middleware properties,
and business aspects, and c) the management of the composite web service

It is important to note that we look at the composite Web Service from the
implementation perspective, i.e., the workflow process definition is available to us
and not only the interface definition of the composite web service. This perspective
is different from the one taken by general web service management approaches
[1, 21, 23]. The latter assume only a WSDL interface and no knowledge about the
internal implementation of the web service.



On the Management Requirements of Web Service Compositions 105

Web services and web service compositions can be managed from the tech-
nical perspective and also from the business perspective [13]. From the technical
perspective, web service compositions are considered as distributed computing
systems. From the business perspective, they represent business processes. Thus,
WSCM is positioned between traditional systems and network management on the
one side, and business process management on the other side [13].

When considering WS-BPEL, the WSCM requirements mentioned so far can
be supported by a WSCM module that will be hopefully part of future WS-BPEL
design-time and run-time tools. The nature of the WSCM requirements and their
dependency on workflow-level details make supporting them necessarily a task
of a component that is part of the orchestration engine because only the engine
has knowledge about the workflow constructs and their execution state. This tool
should show the different partners in the composition and allow the user to define
criteria for their discovery and selection as well as criteria for selecting other ser-
vices if some QoS assurances are not met. The SLA and policy management view
of the WSCM tool shows the SLAs and policies for each party that is involved in
the composition and also the effective policy for each interaction. Further, it should
provide information on the real QoS properties for each interaction via messag-
ing activities in each process instance. The middleware concerns view shows the
middleware properties of all interactions with clients and partners as well as the
middleware properties of non-messaging WS-BPEL activities such as sequence and
scope. The business aspects view shows contracts and also accounting and billing
information. The most important view of that component is definitely the one con-
cerned with the management of the composite web service. It includes the policies
and SLAs of that service, shows values for each QoS parameter such as availability
and performance, and several server-side measurements for its SLA.

4. Related Work

A lot of research has been done in the area of web service management (WSM)
from the application management perspective [14, 18, 23]. OASIS proposes the
Web Services Distributed Management specification that addresses the manage-
ment of IT resources by defining web services interfaces (management through web
services) [22] and the management of web services by defining messages, events
state properties [21]. However, these specifications do not address the management
of web services compositions at all.

In [3] Web Service Management is defined as an extension of enterprise appli-
cation management, which can be seen as the task of monitoring and controlling
applications in an enterprise so that they can be resilient to failures, configurable
to changing needs of the business, accountable for billing and auditing, capable of
performing under varying workloads, and secure to attacks [3]. Following this defi-
nition, Web Service Management has two sides: management of applications within
an enterprise (internal management) and management of relationships with other



106 Charfi, Berbner, Mezini and Steinmetz

web services across enterprises (external management). The external web service
management is characterized by a limited visibility and control over portions of
the application. In that work the management of service compositions from the
composer’s view is not discussed.

The Web Service Offerings Language (WSOL) discussed in [23] supports the
management of web services as well as the management of web service composi-
tions. So this work comes close to our own. However, we believe that it is more
beneficial to use widely-accepted standards, such as WS-BPEL, instead of design-
ing new languages.

In [19], BPEL is extended with capabilities for performance measurements
(e.g., logging and auditing). However, there is no complete support for the man-
agement requirements presented in our paper. Several other works such as [15] and
[17] have considered QoS related non-functional properties but none of them took
into consideration management issues of web service compositions.

In [24], the authors present a Web Service Management Layer (WSML),
which is placed between the client application and the external web services to
offer generic management functionality using aspects, e.g., billing, accounting, se-
curity and transactional support. Furthermore, the WSML proposed in [24] allows
dynamically selecting and integrating web services at runtime based on rules and
policies. However, there is no integration of this concept into a composition lan-
guage and no focus on the management of the composition. A similar approach to
the one adopted by WSML can be used together with AO4BPEL [8] to implement
a WSCM layer.

The Web Service Agent Framework (WSAF) [19] achieves service selection
taking into account the preferences of service consumers as well as the trustwor-ff
thiness of providers. Policies are used by providers and consumers as a formal
description of the offered or needed QoS. Due to possible discrepancies between
the formally offered and the real QoS, service selection relying only on provider
policies may lead to suboptimal service selections. To optimize service selection, the
trustworthiness of provider policies has to be taken into account. Agents are used
as service proxies to select services which propose the best fit between expressed
offers and needs in consideration of the trustworthiness of policies. During execu-
tion agents monitor the QoS and calculate the deviation between the offered and
the real QoS as a measure for the trustworthiness of the policy, which influences
further service selections. This work is also not concerned with the management
requirements in service composition.

5. Summary

In this paper, we illustrated several management requirements in web service com-
positions and defined web service composition management. Our definition is not
specific to one composition language and WS-BPEL was taken as an example for
illustration because it is the standard. We also explained why and how managing



On the Management Requirements of Web Service Compositions 107

a composite web service is different from the general web service management.
Moreover, we argued that state of the art WS-BPEL engines are lacking support
for composition management but hopefully future engines will provide support for
the WSCM requirements discussed in this paper.

References

[1] Alexander Keller and Heiko Ludwig. The WSLA framework: specifying and mon-
itoring service level agreements for web services. Journal of Network and Systems
Management, 11(1):57–81, December 2003.

[2] G. Alonso. Myths around web services. Bulletin of the Technical Committee on Data
Engineering, 25(4):3–9, 2002.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Archi-
tecture, and Applications. Springer, 2003.

[4] A. Arkin, S. Askary, B. Bloch, et al. Web Services Business Process Execution Lan-
guage 2.0, OASIS Standard, 11 April 2007.

[5] R. Berbner, T. Grollius, N. Repp, et al. Management of Service-oriented Architecture
(SoA) based Application Systems. In Proc. of Workshop on Enterprise Modeling and
Information Systems Architectures (EMISA), pages 208–221, October 2005.

[6] R. Berbner, O. Heckmann, and R. Steinmetz. An Architecture for a QoS driven
composition of Web Service based Workflows. In Proc. of Networking and Electronic
Commerce Research Conference, October 2005.

[7] A. Charfi, R. Khalaf, and N. Mukhi. QoS-aware Web Service Compositions Using
Non-Intrusive Policy Attachment to BPEL. In Proc. of the 5th International Confer-
ence on Service Oriented Computing (ICSOC), Industry track, to appear. Springer,
September 2007.

[8] A. Charfi and M. Mezini. AO4BPEL: An Aspect-Oriented Extension to BPEL.
World Wide Web Journal: Recent Advances on Web Services (special issue), March
2007.

[9] A. Charfi, B. Schmeling, A. Heizenreder, and M. Mezini. Reliable, Secure and Trans-
acted Web Service Composition with AO4BPEL. In Proc. of the 4th IEEE European
Conference on Web Services (ECOWS), pages 23–34. IEEE Computer Society, De-
cember 2006.

[10] Chris Kaler and Anthony Nadalin (Eds.). Web Services Security Policy Language
(WS-SecurityPolicy) Version 1.1, July 2005.

[11] A. Committee. Accountability. http://www.atis.org/tg2k/accountability.html,
2001.

[12] J. Eckert, K. Pandit, N. Repp, R. Berbner, and R. Steinmetz. Worst-case perfor-
mance analysis of web service workflows. In Proc. of the 9th Conference on In-
formation Integration and Web-based Applications Services (iiWAS), pages 67–77,
December 2007.

[13] B. Esfandiari and V. Tosic. Requirements for web service composition management.
In Proc. of 11th HP-OVUA Workshop, June 2004.



108 Charfi, Berbner, Mezini and Steinmetz

[14] J. Farrell and H. Kreger. Web services management approaches. IBM Systems Jour-
nal, 41(2):212–227, 2002.

[15] D. Gouscos, M. Kalikakis, and P. Georgiadis. An approach to modeling web service
qos and provision price. In Proc. of 4th WISE Conference, pages 121–130, December
2003.

[16] Jeffry. Schlimmer (Eds.). Web Services Policy Framework (WS-Policy), September
2004.

[17] S. Kalepu, S. Krishnaswamy, and S. Loke. Verity: A QoS Metric for Selecting Web
Services and Providers. In Proc. of 4th WISE Conference, pages 131–139, December
2003.

[18] V. Machiraju, A. Sahai, and A. van Moorsel. Web Services Management Network.
Technical Report HPL-2002-234, HP labs, 2002.

[19] E. M. Maximilien and M. Singh. Toward autonomic web services trust and selec-
tion. In Proc. of the 2nd International Conference on Service Oriented Computing
(ICSOC), pages 212–221, November 2004.

[20] OASIS. Web Services Security: SOAP Message Security 1.0.

[21] OASIS. Web Services Distributed Management: Management of Web Services
(WSDM-MOWS 1.0), 2004.

[22] OASIS. Web Services Distributed Management: Management Using Web Services
(MUWS 1.0), 2004.

[23] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, and W. Ma. Management Applications
of the Web Service Offerings Language (WSOL). In 15th International Conference
on Advanced Information Systems Engineering - CAiSE, pages 468–484, June 2003.

[24] B. Verheecke, M. A. Cibran, and V. Jonckers. AOP for Dynamic Configuration and
Management of Web Services. In Proc. of the International Conference on Web
Services (ICWS-Europe), volume 2853 of LNCS, pages 137–151. Springer, 2003.

[25] A. Westerinen, J. Schnizlein, J. Strassner, et al. Terminology for Policy-Based Man-
agement, RFC 3198, 2001.

Anis Charfi
SAP Research CEC Darmstadt
Darmstadt, Germany

Rainer Berbner
Multimedia Communication Lab
Darmstadt University of Technology, Germany

Mira Mezini
Software Technology Group
Darmstadt University of Technology, Germany



On the Management Requirements of Web Service Compositions 109

Ralf Steinmetz
Multimedia Communication Lab
Darmstadt University of Technology, Germany



Whitestein Series in Software Agent Technologies, 111–128
©c 2008 Birkhauser Verlag Basel/Switzerland¨

BPELDT — Data-Aware Extension for
Data-Intensive Service Applications

Dirk Habich, Sebastian Richly, Steffen Preissler, Mike Grasselt,
Wolfgang Lehner and Albert Maier

Abstract. Aside from business processes, the service-oriented approach
—currently realized with Web services and BPEL—should be utilizable for
data-intensive applications as well. Fundamentally, data-intensive applica-
tions are characterized by (i) a sequence of functional operations processing
large amounts of data and (ii) the delivery and transformation of huge data
sets between those functional activities. However, for the efficient handling of
massive data sets, a significant amount of data infrastructure is required and
the predefined ’by value’ data semantic within the invocation of Web services
and BPEL is not well suited for this context. To tackle this problem on the
BPEL level, we developed a seamless extension to BPEL—the ’BPEL data
transitions.’

1. Introduction

Web services and the Business Process Execution Language for Web Services
(BPEL4WS, BPEL for short) [20] are of interest to both software vendors and
researchers. In this paradigm, the functionality provided by business applications
is enclosed within Web service software components. Those Web services can be
invoked by application programs or by other Web services via internet without
explicity binding them. On top of that, BPEL has been established as the de-facto
standard for implementing business processes based on Web services.

Fundamentally, a process consists of a series of activities. Therefore, BPEL
offers a standardized way to describe the functional compositioff n of services to cre-
ate comprehensive process definitions. A typical service-oriented process example
is the booking a trip application. Aside from such traditional business processes, the
service-oriented approach should also be utilizable in application scenarios with
special properties, since such applications can benefit from the service-oriented
idea as well.



112 Habich, Richly, Preissler, Grasselt, Lehner and Maier

Figure 1. Two-Phase Clustering Approach for Gene Expression
Data Sets

1.1. Data-Intensive Service Applications in SOA Environments

In the context of genome research, the method of gene expression has been used for
several years. Related microarray experiments are conducted all over the world,
and consequently, a vast amount of microarray data sets are produced, e.g. in
biological and medical research addressing a wide range of problems.

After the conduction of the pure experiments, a data analysis process follows
to extract useful knowledge. To increase the statistical significance of the extracted
knowledge, researchers would like to incorporate various microarray experiments
in their analysis processes. In [9], we proposed a two-phase clustering strategy for
gene expression data sets considering this fact in a special way. A simplified view
of our developed concept is illustrated in Figure 1. This analysis process offers
some advantages concerning the result quality. A further important aspect is that
a lot of work can be done in parallel, thus allowing the efficient process execution.

In general, the utilization of the service-oriented approach as execution en-
vironment for such processes provides some advantages with regard to process



BPELDT—Data-Aware Extension for Data-Intensive Service Applications113

orchestration and distributed computing. The realization of the presented analysis
process would include Web services acting (i) as data providers for microarray data
sets and (ii) as functionality providers for normalization and clustering strategies.
The microarray data sets are usually n x m matrices, where n is the number of
genes and m is the number of samples. Typical values for n and m are: n > 20, 000
and m > 100. A special property of this process is that such large data sets have
to be exchanged between participating Web services in the process. A further
property is that it cannot be taken for granted that a participating Web service
can manage the received data in the main memory during the whole processing
time. Therefore, database systems are used for the internal processing of such large
amounts of data.

1.2. Contribution

The current standards of Web services and BPEL are not efficiently applicable
in this special context because both expose some weaknesses concerning the data
aspects. One drawback is the predefined ’by value’ handling of data within the
service invocation of Web services. In service-oriented environments, the Simple
Object Access Protocol (SOAP) is commonly used for communication with and
betweenWeb services. Embedding massive structured data sets in SOAP is possible
but not a suitable solution from the performance perspective, in particular with
regard to memory and scalability issues [6, 8, 18, 22]. To overcome this problem
in data-centric environments, we developed the concept of Data-Grey-Box Web
Services[8] which allow the transparent integration of specialized data propagation
tools in the service invocation procedure.

The second drawback evolves from the implicitly defined data flows in BPEL
and the ’by value’ handling. Through the variables concept within BPEL, the con-
cept of centralized data flows is pursued. That means the BPEL server is directly
involved as a broker in the exchange of massive data sets between two participat-
ing Web services in a process. This may lead to some scalability problems on the
BPEL server. To tackle this issue on the BPEL level, we propose a seamless ex-
tension to BPEL—the ’BPEL data transitions (BPELDT )’—in this paper. With
the help of these data transitions, the data flows are explicitly specified within
BPEL processes. More detailed, our proposed BPEL data transitions represent an
orthogonal data flow concept to the control flow. Furthermore, these data transi-
tions are optimally exploited during process execution, especially in combination
with our Data-Grey-Box Web services. Therefore, BPELDT and Data-Grey-Box
Web Services from a solid foundation to support data-intensive service applica-
tions.

The remainder of the paper is structured as follows: In the next section, we go
through related work, including an introduction to our developed concept of Data-
Grey-Box Web Services. In Section 3, we describe our BPEL data transitions from
a modeling and execution perspective. Implementation details and an evaluation
are provided in Section 4 and Section 5. The paper closes with a summary.



114 Habich, Richly, Preissler, Grasselt, Lehner and Maier

2. Related Work

In this section we give a structured overview of related work. Relevant works
come from the fields (i) Web services, SOAP and BPEL, (ii) Data-Grey-Box Web
services and (iii) specialized data propagation tools.

2.1. Web Services, SOAP, and BPEL

Web services are an innovative architecture paradigm for applications in a service-
oriented architecture (SOA). Fundamentally, Web services are considered as black-
box components, since they do not offer any information on how they work; they
only expose information on the structure of parameters and data they expect as
input and return as result.

The Simple Object Access Protocol (SOAP) is commonly used for communi-
cation with and between Web services. The SOAP protocol defines an XML-based
format for messages to be used in a Web service invocation. Such messages include
a reference to the target service to invoke as well as any number of parameters and
data to be transmitted to the service (’by value’ semantics). Recently, the perfor-
mance of the SOAP protocol has received a lot of attention. Proposed techniques
try to reduce network bandwidth through compression [4, 7] or other approaches
like [24, 18]. Furthermore, serialisation and de-serialisation of XML messages have
been in the focus of optimization approaches [1, 2]. Furthermore, SOAP messages
with attachements are an option for binary data in the form of image files or
encapsulations of other XML documents [10].

On top of Web services, the Business Process Execution Language for Web
Services (BPEL4WS, or BPEL for short) provides a comprehensive syntax for
describing workflow logic. The BPEL language offers a number of predefined ac-
tivities to express control flow patterns. The ever necessary data flow is defined
implicitly by specifying variables that basically represent input and output mes-
sages of activities. In this case, the assign activity is of special interest because
assignments are used within BPEL to manipulate variables.

To execute BPEL processes, a corresponding execution engine is required.
Such a BPEL server controls the service invocations and coordinates the message
exchange between Web services. Therefore, BPEL follows the concept of a cen-
tralized control flow and a centralized data flow. In this case, the BPEL server is
the broker for all SOAP message exchanges between participating Web services in
a process. To improve the capabilities of BPEL, a variety of extension have been
proposed. One well-known extension is BPELJ [21] allowing to include JAVA snip-
pets (code) in BPEL definitions. Furthemore, Maier et al. [14] proposed a similar
extension to BPEL, BPEL4SQL supporting SQL snippets as BPEL activities and
BPEL conditions. This approach can be seen as an embedded SQL approach for
BPEL.

Aside from such extensions, there exist methods for (i) data-flow distribu-
tion (DFDP-WS) [19] and (ii) decentralizing the execution of composite Web ser-
vices [5, 16, 17]. The DFPD-WS approach [19] extends the Web service stack with



BPELDT—Data-Aware Extension for Data-Intensive Service Applications115

Figure 2. Invocation Process of Data-Grey-Box Web Services

a Data-Flow Distribution Protocol for Web Services (DFDP-WS) to exchange data
directly without the requirement of a central broker. Nanda et al. [16] propose an
approach for partitioning centralized BPEL descriptions into smaller parts that
are executed by distributed BPEL engines.

2.2. Data-Grey-Box Web Services

In [8], we introduced the concept of Data-Grey-Box Web Services. In contrast
to the original black-box Web services, we enhanced the Web service interface
with an explicit data aspect offering more information about the data semantics.
Aside from the separation of parameters and data in the interface description, we
introduced a novel binding format for structured data. Through this new data
binding, the Web service signals that data has not been transfered via SOAP
but that there is a separate data layer instead. As before, regular parameters are
handed over via SOAP when calling the Web service.

To handle our newly introduced data binding, we extended the SOAP frame-
work with the integration of a novel data layer component, as illustrated in Figure
2 that shows the whole invocation procedure. On the client side, enhanced Web
service call semantics are necessary. Aside from the transmission of the endpoint
and regular parameters in the SOAP message, the client has to deliver access in-
formation as references for (i) where the input data is available (input reference)
and (ii) where the output data should be stored (output reference). That means
our new data binding is translated into no more than two additional parameters
for access information for input and output data on the client side. These new
parameters are included in the SOAP message for the invocation of Web services.



116 Habich, Richly, Preissler, Grasselt, Lehner and Maier

That means instead of propagating the pure data in an XML-marshaled SOAP
message, we only deliver access information as data pointers in SOAP.

On the service side, our extended SOAP framework receives the SOAP mes-
sage and conducts a separation into the functional aspect and the data aspect.
As illustrated in Figure 2, the associated data layer calls an appropriate mediator
for the data propagation based on the access information of the client and the
service. While the data access information of the client can be found in the re-
ceived SOAP message, the data access information for the service instance must
be queried from our extended service infrastructure [8]. Fundamentally, a mediator
is a neutral partner which is responsible for the data propagation between client
and Web service. Examples of mediators are ETL, e.g. IBM DataStage, or data
replication tools (see Section 2.3). Those mediators have to be accessible over a
standard Web service interface. Advantages of the proposed mediator concept are
(i) the optimized data propagation through specialized tools, (ii) the availability
of an independent concept enabling an exchange of the mediators, and (iii) the
release of data propagation to a third party.

If a Data-Grey-Box Web service receives and returns a data set, two data
propagation tasks will be initiated. The first propagation task for the input data is
conducted before the pure functionality of the service is invoked. The correlation
of this input data to the Web service instance is done by our extended service
infrastructure. If the input data propagation task is finished, the functionality is
automatically invoked. The last step is the initiation of the data propagation task
to deliver the output data to the client.

2.3. Specialized Data Propagation Tools

Fundamentally, the database research community has paid a lot of attention to the
field of data exchange between different database systems. A well-known method
is the ETL (Extract-Transform-Load) approach, where data from different data
sources are loaded into a common data warehouse [23]. Such ETL processes consist
of three parts: (i) extraction of data from the different source systems, (ii) appli-
cation of a series of rules and functions to the extracted data to derive the data to
be loaded, and (iii) loading of the data into a data warehouse system. This ETL
approach is a data-specialized technique to efficiently transmit structured data to
various different data management systems, e.g. relational or XML database sys-
tems. A further popular data propagation method is replication [13]. In database
systems, this is used to provide redundancy or to balance the load across multiple
database servers.

It is already possible today to include such tools in the service-oriented envi-
ronment. With IBM’s information server [12], for example, pre-defined ETL jobs
can be provided as Web services. These Web services can then be included in the
process orchestration. Disadvantages of this approach lie in the fact that (i) such
data operations are explicitly integrated in the control flow and (ii) whenever such
an operation is to realize the data exchange between two Web services (source and
target WS) in a process, these 3 Web services are then no longer loosely coupled



BPELDT—Data-Aware Extension for Data-Intensive Service Applications117

but can only be used together. The reason is that the source and target WS have
to be designed appropriately, i.e. the source WS do not deliver and the target WS
do not receive the data via the service interface.

3. BPEL Data Transitions

Our proposed Data-Grey-Box Web Services (DGB Services) [8] are only one step
in the right direction towards the efficient support of data-intensive service ap-
plications. The subsequent step is the orchestration of DGB Services to create
comprehensive processes. Therefore, we present our novel BPEL data transitions
(BPELDT ) as a data-aware extension of BPEL in this section. These data tran-
sitions are a new explicit link type connecting several DGB Services on the data
level. Fundamentally, our newly introduced BPEL data transitions are an orthog-
onal data flow concept to the control flow, similar to the data aspect in BPMN
[3].

3.1. Modeling Perspective

From the modeling perspective, the original BPEL approach follows a two-level
programming model [14, 20]. The first level (lower level) consists of Web services
as executable software components realizing the basic activities. The upper level
is often called ’programming in the large;’ there, the order of the activities is or-
chestrated. With our explicit BPEL data transitions, we extend this programming
model to a three-level approach. The three levels are:
1. Lower Level: This level includes Web services as executable software compo-

nents; in our case, as Data-Grey-Box Web Services with an explicitly pub-
lished data aspect.

2. Functional Flow Modeling Level: On this level, a domain expert models the
pure functional process logic without considering data flows. The main ad-
vantage is that the domain expert can focus on the functional logic, and the
data flow is modeled by data placeholders. The result on this level is a com-
prehensive functional process description. Such descriptions are essentially
not executable.

3. Data Flow Modeling Level: This third level represents our extensions, where
a data management expert takes the functional process description and an-
notates this process with all necessary data flows using our BPEL data tran-
sitions. The functional description of the process is not changed by this data
flow annotation concept.
In Figure 3, a simple process with an explicit data transition between two

services is depicted. In this case, the modeling of the illustrated data flow is done
with the specialized data propagation tool ETL. As illustrated in the figure, the
output of WS1 consists of two data sets (outputSchema1, outputSchema2 ). Then,
two different transformation operations are separately applied on the data sets
(Transformer V0S2, Transformer 86 ). Since service WS3 expects only one input



118 Habich, Richly, Preissler, Grasselt, Lehner and Maier

Figure 3. ETL Process Inside BPEL Data Transition

data set (inputSchema1 ), the transformed data sets are joined together (Join 87 ).
Fundamentally, the following data flow relationships between functional operations
exist: 1 : 1, 1 : N , N : M , N : 1. For example, a 1 : N relationship signifies that
the output data of a Web service is used as input data for a set of Web services.

The result of the three modeling steps is a process definition with an explicit
control flow and with an explicit data flow as well.

3.2. Execution Perspective

In Section 2.2, we reviewed our Data-Grey-Box Web Services. These services of-
fer more information on the data aspect than standard Web services do. As we
demonstrated in [8], the usage of Data-Grey-Box Web Services creates an obvious
performance benefit in the classic client-server scenario. The composition of Web
services with BPEL generates more dependencies. These dependencies are built
during the additional modeling phase in the form of data transitions.

Standard Web services do not dispose of the qualification to handle these
explicit data flows. Up to now, implicit data flows have been used in BPEL engines,
resulting in centralized data flows where the BPEL engine is used as a central
data broker. With this principle, BPEL engines do not scale well on data-intensive
processes. The additional data aspect information in Data-Grey-Box Web Services
now enable us to handle these data transitions with specialized tools. Thereby,
every data transition joins the data output reference of the producing service
with the data input reference of the consuming services. The data propagation
is conducted by a neutral mediator. In the composition scenario, the mediator
may now handle the propagation and data transformation as well. The additional
transformation execution by the mediator has several advantages: (i) the service
does not lose its autonomy, (ii) better load balancing is possible, since the BPEL
engine is not responsible any longer for the data transformation with BPELJ or
for mediation flows, and (iii) already allocated resources are used, since mediators
have to handle the data anyway.

If mediators are used to realize our BPEL data transitions with Data-Grey-
Box Web Services, then three service invocation protocols are possible. These



BPELDT—Data-Aware Extension for Data-Intensive Service Applications119

protocols can be categorized as pessimistic ones and optimistic ones. Pessimistic
means that the allocation of the data input reference of the consuming (target)
service is done after the producing service has finished. In case of an optimistic
approach, the data input references are allocated before the producing service is
executed. The resulting three service invocation protocol approaches are described
in more detail in the next section. This description is oriented at a small example
BPEL process: two Data-Grey-Box Web Services WS1 and WS2 are connected
on the control level and the output data of WS1 is used as input data for WS2.
That means WS1 and WS2 are connected by a control flow and a data flow.

Pessimistic and Control-Flow-Oriented. With this method, a decentralized data
flow is realized in consideration of the control flow. That means that the control
flow triggers the execution of the data flows. As a pessimistic approach, the data
propagation is not started until it is really needed, that means until the consuming
service is started (see Figure 4). Based on our example, WS1 commits its output
reference to the BPEL engine. In the invocation procedure of WS2, this reference
will be transmitted to WS2, calling the mediator (the mediation invocation is done
by the introduced data layer in the SOAP framework; see Section 2.2 or [8]). The
mediator finally transforms the data and delivers them to WS2. After the data
propagation has been finished, the functional part of WS2 can be executed. The
advantage of this approach is that data is not transfered over a broker in vain but
the data is stored at WS1 until WS2 triggers the mediator. In the worst case, the
duration can amount to hours or days.

Figure 4. Pessimistic and Control-Flow-Bound Service Invocation

Semi-Pessimistic. With this method, centralized as well as decentralized data flows
are possible. Figure 5 illustrates the service invocation protocol approach. In this
case, the BPEL server pre-defines all input and output references for the partici-
pating Web services independent from control flow or data flow information. That
means the data is temporarily stored at a third-party site. In the centralized case,
the BPEL server must own a data source to temporarily store the data, while in
the distributed case, the BPEL server uses arbitrarily distributed data stores as
temporary storage devices.

Fundamentally, this service-invocation approach is compatible to the existing
procedure (centralized data flow). However, instead of handling the data ’by value’,



120 Habich, Richly, Preissler, Grasselt, Lehner and Maier

the data is coordinated by reference. If necessary, the data can be propagated to the
BPEL server to get ’by value’ access. Disadvantages are (i) the interlocking of the
engine with the data flow, and (ii) the fact that two data propagation operations
(two mediator calls) are necessary to exchange data between two services. An
advantage of this invocation principle is that it is always applicable.

Figure 5. Semi-Pessimistic Service Invocation

Optimistic and Data-Flow-Oriented. The third service invocation protocol ap-
proach is optimistic. That means the output data is transfered immediately after
its creation in WS1. Therefore, the input reference of WS2 is committed during
the invocation of WS1. The data propagation through a mediator is done be-
fore WS2 is invoked. To realize this approach, the invocation protocol has to be
changed in general. We introduce a preinvoke, which is illustrated in Figure 6.
During this preinvoke, the data resources for the input data will be allocated in
WS2. This input reference will be returned to the BPEL engine and used during
the invocation of WS1. This preinvoke allocation implies a policy mechanism to
ensure that only authorized invocations are processed. This approach is efficient
if Web services are invoked asynchronously. Thus, a parallel control and data flow
is possible.

Figure 6. Optimistic and Data-Flow-Bound Service Invocation



BPELDT—Data-Aware Extension for Data-Intensive Service Applications121

Figure 7. Data-Aware SOA Environment

3.3. Summary and Further Investigations

The result of the combination of Data-Grey-Box Web Services with our proposed
BPEL data transitions is a data-aware SOA environment as illustrated in Figure 7.
In such an environment, a functional component (BPEL server) and a data com-
ponent interact together. Data-Grey-Box Web Services are still loosely coupled
as regular Web services. Moreover, the data exchange between participating Web
services happens with specialized data propagation tools.

The presented BPEL data transitions with the three service invocation princi-
ples create some interesting questions for further research. The additional data-flow
modeling phase for data transitions is the starting point of several optimization
approaches (see Figure 8). It is desirable to have the possibility to model the data
propagation and transformation in an abstract way. From this, it should be pos-
sible to choose the best strategy to transfer the data, for example, through ETL,
stored procedures or other specialized approaches. Depending on the concrete un-
derlying scenario, several optimized process execution plans can be derived from
this abstract process model.

The second point deals with the execution of the process, in particular with
the selection of one out of the three presented service invocation principles. The
optimistic as well as the pessimistic approach have the disadvantage that one side
has to store the data for a long time (in the worst case). The advantage, however,
is that in both approaches, only one data propagation operation is required to
deliver data from the source Web service to the target Web service, while the
semi-pessimistic principle uses two data propagation operations. To tackle this
problem from a process perspective, we want to introduce a Data-Grey-Box Web
Service policy indicating the time span before and after a certain event during



122 Habich, Richly, Preissler, Grasselt, Lehner and Maier

Figure 8. Optimization Approach

which data can be stored on the service’s side. With the help of some process
statistics, we want to determine the best invocation principle. Moreover, some
runtime adaptation techniques have to be developed.

4. Implementation Details

In this section, we describe our prototypical realization of the entire concept within
the Websphere Integration Developer (WID). The BPELDT process for our two-
phase clustering strategy is depicted in Figure 9. Again, we used three different
microarray data sets as starting point. These microarrray data sets are persistently
stored in a relational database system (IBM DB2), and Data-Grey-Box Web Ser-
vices allow access to them. The normalization and clustering are realized as single
Data-Grey-Box Web Service (getLocalModel Service). The aggregation of the local
clustering result to a global clustering result is done by the data-grey-box Web
service computeGlobalModel. All data-grey-box Web services use a relational data-
base system in order to allow the efficient and scalable processing of incoming data
and some tasks within those services are pushed down to the database system [11].

In contrast to the more general implementation presented in [8], Data-Grey-
Box Web Services are realized in a slightly different way within WID. The sepa-
ration of parameters and data in the interface description is done by embedding
schema descriptions in the DBM format for input and output data in the types
section. Through naming conventions, a service requestor is able to determine
which database-oriented schemas for input and output data are assigned to each
functional operation. Moreover, instead of integrating of the introduced data-layer
component within the SOAP framework, each Data-Grey-Box Web Service inter-
face includes various administrative operations. These administrative operations
are normally hidden from the service requestor by the data-layer component.



BPELDT—Data-Aware Extension for Data-Intensive Service Applications123

Figure 9. Two-Phase Clustering with BPELDT

BPEL data transitions are prototypically realized using <flow>-link types
with transition conditions. These transition conditions include the data flow task
descriptions. As execution strategy, we use the optimistic and data-flow-oriented
approach. We think this strategy offers some advantages with regard to perfor-
mance compared to the other execution approaches. To enable the optimistic ap-
proach, two additional activities are necessary. The first activity, initDF, consists
of the initialization of all data flow sessions at the participating Data-Grey-Box
Web Services one th process has been started. That means necessary data re-
sources are allocated at the services. The last activity of the process, finalizeDF,
closes all data sessions and deallocates all data resources at the services. However,
the implementation of the semi-pessimistic strategy is straightforward.

The abstract definition of the data transformation is done with the XML-
based Mapping Specification Language (MSL) [15]. The Rational Data Architect
(RDA) can be used to specify such transformations based on schema information.
For each data flow, an MSL template will be generated containing the data output
schema of the data-producing Web service (source schema) and the input schema
of the data-consuming service (target schema) (see Figure 10). Those templates
have to be refined by the user.



124 Habich, Richly, Preissler, Grasselt, Lehner and Maier

Figure 10. MSL Template in Rational Data Architect

The result of the entire modeling part is a functional process definition with
explicit data flows containing transformation specifications in MSL form. During
the process deployment, the BPEL process definition is investigated and included
data flows will be mapped to parametrized DataStage ETL job descriptions. In
this mapping step, the MSL specification will be considered. That means the data
propagation is restricted to ETL for now.

At process runtime, the data flows are executed according to our optimistic
and data-flow-oriented strategy. The parametrized DataStage ETL job descrip-
tions are invoked with the current information regarding the data source from our
Data-Grey-Box Web Services.

5. Evaluation

In this section, we evaluate our proposed BPELDT approach regarding the perfor-
mance gain. An evaluation of the data-grey-boxWeb services is presented in [8]. In
this BPELDT evaluation, we delivered microarray data matrices from a provider
service to an analysis service. In the experiment, we measured the time for the data
exchange between these two services (ii) with the original BPEL approach, where
the BPEL server is the broker, (ii) with BPELDT with the optimistic execution
strategy and (iii) with BPELDT with the semi-pessimistic approach. The resulting
times are depicted in Figure 11(a). In the conducted experiments, we changed the
number of columns of the microarray data matrices, whereas the number of rows
remained fixed (rows=20, 000).



BPELDT—Data-Aware Extension for Data-Intensive Service Applications125

(a) Evaluation Times BPEL and BPELDT (b) Speedup of BPELDT

Figure 11. Evaluation of BPELDT

As illustrated in Figure 11(a), both BPELDT execution strategies are faster
than the original BPEL approach. The data flows in case of BPELDT are executed
with the ETL tool DataStage. The resulting speedups compared to the SOAP
transmission in case of the original BPEL approach are depicted in Figure 11(b).
As expected, the semi-pessimistic execution strategy is slower than the optimistic
as well as the pessimistic approach. In the semi-pessimistic case, an additional data
propagation is necessary, since the data is temporarily stored at a third position.
Therefore, this strategy is slower than the other two execution approaches. In
general, this experiment confirms the evaluation results of our Data-Grey-Box Web
Services. Data-Grey-Box Web Services and BPELDT are more suitable for data-
intensive service applications with regard to performance issues than the original
approach.

6. Conclusion

Up to now, the current standards of SOAP, WSDL and BPEL define a ’by value’
handling of data in the service-oriented architecture. However, this ’by value’ han-
dling is not suitable for data-intensive application. In this paper, we have illus-
trated our whole service-oriented solution for data-intensive applications. This
solution includes Data-Grey-Box Web Services [8] which allows the integration of
specialized data propagation tools in the invocation process. In this case, the data
is not longer handed ’by value’. The main focus of this paper is the introduc-
tion of BPEL data transitions to enable an efficient composition and execution of
Data-Grey-Box Web Services. Aside from theoretical background, we present our
prototypical realization, and some evaluation result. Furthermore, we highlight
further reseach aspects in this direction.



126 Habich, Richly, Preissler, Grasselt, Lehner and Maier

References

[1] Nayef Abu-Ghazaleh and Michael J. Lewis. Differential deserialization for optimized
soap performance. In Proceedings of the ACM/IEEE SC2005 Conference on HighCC
Performance Networking and Computing (SC 2005, November 12-18, 2005, Seattle,
WA, USA), 2005.

[2] Nayef Abu-Ghazaleh, Michael J. Lewis, and Madhusudhan Govindaraju. Differential
serialization for optimized soap performance. In Proceedings of the 13th International
Symposium on High-Performance Distributed Computing (HPDC 2004, 4-6 June,
Honolulu, Hawaii, USA), pages 55–64, 2004.

[3] Business Process Modeling Notation (BPMN) Information. http://www.bpmn.org/.

[4] Min Cai, Shahram Ghandeharizadeh, Rolfe R. Schmidt, and Saihong Song. A com-
parison of alternative encoding mechanisms for web services. In Database and Expert
Systems Applications, 13th International Conference, 2002.

[5] Girish Chafle, Sunil Chandra, Vijay Mann, and Mangala Gowri Nanda. Decentralized
orchestration of composite web services. In Proceedings of the 13th International
Conference on World Wide Web-Alternate Track Papers and Posters(WWW 2004,
New York, NY, USA, May 17-20), page 134143, 2004.

[6] Kenneth Chiu, Madhusudhan Govindaraju, and Randall Bramley. Investigating the
limits of soap performance for scientific computing. In 11th IEEE International Sym-
posium on High Performance Distributed Computing, 2002.

[7] Marc Girardot and Neel Sundaresan. Millau: an encoding format for efficient rep-
resentation and exchange of xml over the web,http://www9.org./w9cdrom/154/
154.html.

[8] Dirk Habich, Steffen Preissler, Wolfgang Lehner, Sebastian Richly, Uwe Assmann,
Mike Grasselt, and Albert Maier. Data-grey-box web services in data centric en-
vironments. In Proceedings of the 2007 International Conference on Web Services
(ICWS 2007), pages 976–983, 2007.

[9] Dirk Habich, Thomas Wächter, Wolfgang Lehner, and Christian Pilarsky. Two-phase¨
clustering strategy for gene expression data sets. In Proceedings of the 2006 ACM
Symposium on Applied Computing - Bioinformatics Track (SAC 2006, Dijon, France,
April 23-27), pages 145–150, 2006.

[10] Steffen Heinzl, Markus Mathes, Thomas Friese, Matthew Smith, and Bernd
Freisleben. Flex-swa: Flexible exchange of binary data based on soap messages with
attachments. In Proceedings of the IEEE International Conference on Web Services
(ICWS’06), Washington, DC, USA, 2006. IEEE Computer Society.

[11] Alexander Hinneburg, Wolfgang Lehner, and Dirk Habich. Combi-operator: Data-
base support for data mining applications. In Proc. of 29th International Conference
on Very Large Data Bases, 2003.

[12] IBM. Ibm information server, 2007. http://www-
306.ibm.com/software/data/integration/info server/.

[13] Bettina Kemme and Gustavo Alonso. A new approach to developing and implement-
ing eager database replication protocols. ACM Trans. Database Syst., 25(3):333–379,
2000.



BPELDT—Data-Aware Extension for Data-Intensive Service Applications127

[14] Albert Maier, Bernhard Mitschang, Frank Leymann, and Dan Wolfson. On combin-
ing business process integration and etl technologies. In Datenbanksysteme in Busi-
ness, Technologie und Web, 11. Fachtagung des GI-Fachbereichs ”Datenbanken und
Informationssysteme” (BTW 2005, Karlsruhe, 2.-4. März)¨ , pages 533–546, 2005.

[15] Mapping Specification Language. http://www.research.ibm.com/journal/sj/
452/roth.html.

[16] Mangala Gowri Nanda, Satish Chandra, and Vivek Sarkar. Decentralizing execu-
tion of composite web services. In Proceedings of the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2004, October 24-28, Vancouver, BC, Canada), page 170187, 2004.

[17] Mangala Gowri Nanda and Neeran M. Karnik. Synchronization analysis for decen-
tralizing composite web services. In Proceedings of the 2003 ACM Symposium on
Applied Computing (SAC03, Melbourne, FL, USA, March 9-12), page 407414, 2003.

[18] Alex Ng. Optimising web services performance with table driven xml. In Proc. of
the 17th Australian Software Engineering Conference, 2006.

[19] Lucian-Mircea Patcas, John Murphy, and Gabriel-Miro Muntean. Middleware sup-
port for data-flow distribution in web service composition. In Proceedings of the
combined Doctoral Symposium and 15th PhDOOS Workshop at the 19th European
Conference on Object Oriented Programming(PhDOSS, Glasgow, Scotland, July 25),
2005.

[20] Specification of BPEL. http://www-128.ibm.com/developerworks/library/
specification/ws-bpel/.

[21] Specification of BPELJ. http://www-128.ibm.com/developerworks/library/
specification/ws-bpelj/.

[22] Robert van Engelen. Pushing the soap envelope with web services for scientific com-
puting. In Proc. of the International Conference on Web Services (ICWS’03), 2003.

[23] Panos Vassiliadis, Alkis Simitsis, and Spiros Skiadopoulos. Conceptual modeling for
etl processes. In Proc. of the 5th ACM international workshop on Data Warehousing
and OLAP, pages 14–21, New York, NY, USA, 2002. ACM Press.

[24] Patrick Widener, Greg Eisenhauer, and Karsten Schwan. Open metadata formats:
Efficient xml-based communication for high performance computing. In 10th IEEE
International Symposium on High Performance Distributed Computing, 2001.

Dirk Habich
Dresden University of Technology, Germany
Database Technology Group

e-mail: dirk.habich@tu-dresden.de

Sebastian Richly
Dresden University of Technology, Germany
Software Engineering Group

e-mail: sebastian.richly@inf.tu-dresden.de



128 Habich, Richly, Preissler, Grasselt, Lehner and Maier

Steffen Preissler
Dresden University of Technology, Germany
Database Technology Group
e-mail: steffen.preissler@tu-dresden.de

Mike Grasselt
IBM Boeblingen Lab, Germany
Information Server SWG SOA Integration
e-mail: grasselt@de.ibm.com

Wolfgang Lehner
Dresden University of Technology, Germany
Database Technology Group
e-mail: wolfgang.lehner@tu-dresden.de

Albert Maier
IBM Boeblingen Lab, Germany
Information Server SWG SOA Integration
e-mail: amaier@de.ibm.com



Whitestein Series in Software Agent Technologies, 129–140
©c 2008 Birkhauser Verlag Basel/Switzerland¨

Towards Resource-Oriented BPEL

Hagen Overdick

Abstract. Service orientation is the de-facto architectural style, today. But,
what actually is a service and how should service boundaries be chosen? Re-
source orientation, once seen as a ”light-weight” approach to Web services, is
reshaping itself as a modeling strategy to service orientation. Along comes the
realization that resources are in-fact complex state machines. Currently, there
is no accepted standard for modeling the internal state of resources. In this
paper, BPEL is proposed as a modeling language for resources and necessary
extensions to BPEL are outlined.

Keywords. BPEL,SOA,REST,BPM.

1. Introduction

There has been a lot of discussion about service-oriented architectures (SOA) [1],
lately. A service is a mechanism to enable access to one or more capabilities. The
eventual consumers of the service may not be known to the service provider and
may demonstrate uses of the service beyond the scope originally conceived by the
provider [2]. If a provider may not know the actual use of a service, what makes a
service a service? What minimum level of functionality must a service provide to
be called a service? Furthermore, according to recent studies [3], about two-thirds
of all services deployed today are data-centric. Is a memory cell already a service?
Resource orientation [4] solves this dilemma by making every entity explicit, not
just services. Such explicit entity is called a resource. If one can find a noun for an
entity, it qualifies as a potential resource. All properties of services still hold true
for resources, i.e. they have an independent life- cycle, a globally unique reference,
and their interaction style is stateless message exchange.

Resource orientation is the dominant architectural style on the Internet, as it
is the scientific foundation of the World Wide Web [5]. Resources have a globally
shared request message classification system, confusingly called uniform interface.
The idea is, that even without semantic understanding of the messages exchanged,
the classification provides additional benefits to the overall architecture. However,



130 Overdick

up to now, the World Wide Web favors an informal, ad-hoc description of complex
resource behaviors. Roy Fielding coined the term ”hypertext as the engine of
application state” [4], upgrading this ad-hoc fashion from bug to feature; quite a
successful feature indeed measured by the success of the World Wide Web itself.

Enterprises and research on the other hand are very much interested in the
description of complex behaviors. Out of this need, Web Services [6] were created
as an additional layer on top of resource orientation, including the Web Service
Definition Language (WSDL) [7] to describe service interfaces and the Business
Process Execution Language (BPEL) [8] for behavioral descriptions. Recently, re-
source orientation is rediscovered as a viable subset of service orientation [9]. This
also raises the question, if complex resource behavior can be expressed formally.
With the introduction of the Web Application Definition Language (WADL) [10], a
candidate for the description of interfaces is given. This paper outlines how BPEL
can be adapted to describing process aspects of resources.

The remainder of this paper is structured as follows: In chapter 2, an intro-
duction to resource orientation is given. In chapter 3, an example of a complex
resource behavior is shown to illustrate the requirements of a resource-oriented
process language. In chapter 4, BPEL is introduced as a viable candidate for such
a language and the necessary extensions are outlined. Chapter 5 discusses related
work and chapter 6 concludes this paper with a summary and outlook.

2. Resource Orientation

Resource orientation is a subset of service orientation. As such, it can be regarded
as a modeling strategy for services. Instead of a few ”gateway” services, with care-
fully crafted custom interfaces, all entities of the modelled system expose a uniform
interface. To illustrate this, let us look at an example of such uniform interface.
The Hypertext Transfer Protocol (HTTP) [11] defines its uniform interface for
requests as:
GET. : Messages labeled as GET have an empty service request and are guaran-
teed to have no substancial effect within the receiver of such request, i.e. they are
safe to call. GET responses are expected to be a description of the current state of
the targeted resource. These attributes allow GET to act as a universal reflection
mechanism, it can be issued without any prior knowledge of the resource. Also, as
GET does not alter the state of the targeted resource, the response can be cached.
This has great benefits to a distributed architecture and both aspects can be seized
without prior semantic knowledge of the targeted resources. In the physical world,
GET request can be correlated to looking.
PUT. Messages labeled as PUT do cause an effect in the targeted resource, but do
so in an idempotent fashion. An idempotent interaction is defined as replayable,
i.e. the effect of N messages is the same as that of 1. In a distributed system,
where transactions may not be available, this is a great help for error recovery as
idempotent messages can be delivered at least once without any effort, just retry



Towards Resource-Oriented BPEL 131

until acknowledged. Again, thanks to the uniform interface, the assumption of
idempotency can be made without any prior semantic knowledge of the resource
involved. In the physical world, this correlates to physical interaction, although
replaying the exact same ”message” is only a theoretical mind exercise.
DELETE. Messages labeled as DELETE do cause an effect in the targeted re-
source, where that effect is expected to be a termination. Just as PUT, DELETE
is defined as idempotent. However, as with all messages, the interpretation is solely
the responsibility of the receiver, i.e. a DELETE has to be regarded as ”please ter-
minate”. In the physical world, this correlates to sending a notice of cancelation.
POST. All other types of messages are labeled as POST, i.e. they cause an effect
in the receiver and they are not safe to replay. This is a catch all mechanism for
all messages that can not be described by the prior verbs. Without a uniform
interface, all messages would be treated like this, loosing context free reflection,
caching and replayability.

The uniform interface tries to lower the barrier of entry to a client and it also
includes a characterization of response messages. Thus, interaction with a resource
can start purely on the basis of semantic understanding of the uniform interface.
If one obtains a resource identifier, the uniform interface provides a minimum level
of shared semantics to start with. However, this set of semantics is not restricted.
A uniform interface simply enforces that any label (or verb as HTTP calles them)
may be applied to all resources. To increase the likelihood of understanding, both
client and resource perform content type negotiation on each request. Content type
negotiation honors the fact that there are many ways of encoding information.

Figure 1. Exposing behavior in resource-oriented architectures

Conceptually, a resource is beyond the communication system, i.e. a client
can only communicate with it via the uniform interface it addresses by a globally
unique identifier, e.g. a URI [12]. The relationship between a resource and a URI
may change over time. Yet, resource orientation today spends very little effort
on describing the underlying process defining the relationship between a resource



132 Overdick

and its URIs. While a URI is bound to a resource, it exposes a certain resource
behavior. In Figure 1 the relationship between these concepts described is shown.

3. Example of a complex resource behavior

As an illustration, let us now introduce a complex resource most people should
be familiar with: an online ordering process. In Figure 2, a very simple version
is illustrated. A shopping cart is created by the user by adding an initial item.
Adding items can be repeated as many times as the user likes. If the user simply
stops interacting with the shopping cart, it may time out or the user decided to
check out by choosing a payment method. At this point the user is presented with
the content of the shopping cart, the chosen payment method, and the total bill
to confirm before actually committing the order.

Figure 2. Shopping cart as a complex resource

The first step towards a good resource-oriented design is to identify the rel-
evant resources. Is a shopping cart actually a resource on its own, or just a state
of an order? By modeling the later—the shopping cart to be just a state of an
order resource—we can uniquely identify the order in all stages, e.g. shopping
cart, check-out, assembly, in-delivery, and post-delivery. The user is given a single
URI, something to bookmark in a browser. Clicking on such a bookmark will issue
a GET request. A GET request in a resource-oriented view is nothing else than
introspecting the current state of a resource. In the true spirit of hypermedia as
the engine of application state the returned representation of the current resource
should include all relevant links and possible interactions. By doing so, the client
is never forced to understand the process as such, being able to browse and post is
the only requirement to participate as a client. This simplicity is the true strength
of a resource-oriented design and the foundation of the World Wide Web’s success
story. At the same time, this motivates the resistance against formal descriptions



Towards Resource-Oriented BPEL 133

of interfaces and processes as practiced in a Web services environment. While re-
source orientation does not conflict with formal interface descriptions and in fact
would benefit from it, any attempt to introduce such formalism to resource orien-
tation must honor the fact that resource orientation can and will work without
such formalism.

Nevertheless, it should have become apparent that resources are indeed com-
plex state machine and that such state machines can be expressed as processes,
matching the business concepts used to motivate the system in the first place. We
already identified a shopping cart to be just a state or dependent sub-resource of
an order. However, this opens the question of how to choose resource boundaries.
Is the order a resource in itself or is it a sub-resource of the store? In [13] a very
pragmatic answer is given: Breaking down an application into as many resources
as possible benefits scalability and flexibility, but at the same time the resource
is the scope of serializability, i.e. there may not be transactions across resource
boundaries. I.e. the order is not dependent on the store (at least in a transactional
view), but the order items probably are dependent on the order, as an order item
may only be changed as long as the order has not been committed.

Before we outline a process notation in the next chapter, let us summarize
our findings: A resource may consist of several complex states, each able to ex-
pose a set of URIs. Each of these URIs expose a certain behavior of the resource.
Interaction with any of the resource’s URIs is classified into safe (one interaction
has the same effect as zero interactions), idempotent (one interaction has the same
effect as n interactions), or unrestricted, i.e. such interaction is able to produce an
uncontrollable side-effect and/or change the internal state of the resource. Also, a
resource must be able to extract URIs from representations received via interac-
tion and be able to then interact with the extracted URIs, as this is a fundamental
aspect of resource orientation.

4. Resource-oriented BPEL

In this section, BPEL is introduced and extensions for modeling complex resources
are outlined.

4.1. BPEL

BPEL is arguably the de facto standard for specifying processes in a Web services
environment. BPEL provides structured activities that allow the description of the
control flow between the interaction activities. BPEL does not support explicit
data flow, but rather relies on shared variables referenced and accessed by interac-
tion activities and manipulation activities. The control flow between activities can
be structured either block-based by nesting structured activities like <sequence>
and <flow>, or graph-based by defining directed edges (called <links>) between
activities inside <flow> activities. Both styles can be used as the same time, mak-
ing BPEL a hybrid language.



134 Overdick

Beyond control flow and data manipulation, BPEL also supports the notion
of scopes and allow for compensation handlers and fault handlers to be defined
for specific scopes. Hence, scopes represent units of works with compensation-
based recovery semantics. Fault handlers define how to proceed when faults occur,
compensation handlers define how to compensate already completed activities,
as processes not transactional and consequently must be rolled back explicitly.
Further more, scopes allow for event handlers which can be regarded as repeatable,
attached sub-processes [14] triggered by events.

4.2. BPEL without Web Services

The wide-spread acceptance and the sophistication of the control flow constructs,
make BPEL a strong candidate when trying to formally express the process govern-
ing the relationship between a resource and its URIs. Both the interaction activities
and the grouping mechanism that allows modeling complex message exchanges de-
pend on WSDL. However, in [15] BPEL light is introduced, a WSDL-less version
of BPEL. While BPEL light itself still is not a good match for resource orienta-
tion, a clear path on how to remove the dependency on WSDL from BPEL and
adding new interaction models in a compatible way is shown clearly. In essence,
the elements <receive>, <reply>, <invoke>, <onMessage> within a <pick>, as
well as <onEvent> within an <eventHandler> need to be replaced by constructs
not relying on WSDL.

4.3. Using BPEL to model resource states

BPEL does not have an explicit state modeling, but an implicit via the <scope>
construct. Generally speaking, a POST message or an event may cause a state tran-
sition. However, while in a state, as many GET, PUT, and/or DELETE messages
may arrive, as they are safe and/or idempotent.

As shown in Figure 3, BPEL provides the concept of event handlers to model
GET, PUT, and DELETE interaction as attached, repeatable subprocesses. En-
forcing safe and idempotent characteristics of those interactions is beyond the
scope of this paper. However, a straight forward solution may be disallowing write
access to any variable during a GET interaction to ensure safeness. PUT and
DELETE can be enforced idempotent by disallowing write access to any variable
read, i.e. overwriting a variable is ok, computing a new value based on the old
one is not. Such interaction may be executed several times and in parallel, while
POST interaction or events move the BPEL process into a new scope.

4.4. Resource interaction in BPEL

Web services try to abstract from the communication protocol, providing support
for a wide range of interaction models, such as asynchronous or one-way interaction.
Resource orientation on the other hand puts much effort into the core protocol as
the lowest level of shared semantics. The dominate resource-oriented protocol is
HTTP. Consequently there is no point in abstracting away from it when modeling



Towards Resource-Oriented BPEL 135

Scope
(= current State)

Scope
(= new State)

POST

GET

PUT

DELETE

POST receiver

Environment

Figure 3. Using BPEL to model resource states

interaction in BPEL. In fact many proponents of resource orientation have major
concerns with any attempt to hide the protocol layer behind an abstraction.

All interaction in HTTP is based on synchronous request-response. Asynchro-
nous communication is supported by identifying either the asynchronous sender
or receiver by an explicit URI and sending it along in the initial request. I.e. at
the protocol level, there will be a synchronous request and then an independent
synchronous response push or pull. This design makes the interaction much sim-
pler, but requires a simple mechanism to construct URIs. There is currently one
attempt to standardized URI templating [16] applicable to creation, matching, and
selection of URIs. Within WADL, URI templates are already used for matching
and selection of URIs. To a resource itself, creation of URIs must be available, too.
Coming back to our example process, upon receiving a shopping item, it must be
added to the shopping cart, in turn generating one or more URIs for the newly
created item.

<assign>

<copy>

<from>rbpel:generate-uri("./item/{itemNumber}")</from>

<to variable="newItemURI" />

</copy>

</assign>

Figure 4. URI creation by XPath-method

The easiest way to provide such functionality is to offer an XPath function.
Figure 4 shows how the regular <assign> construct is used to create a new URI



136 Overdick

using such XPath function. URIs themselves do not need a special construct and
can be kept in normal variables.

Figure 5. URI interaction

With URIs introduced to BPEL, let us look at URI interaction again, as
shown in Figure 5. Any URI interaction is synchronous and the tuple of request and
response is grouped into a message exchange. Both request and response contain
a header and a body, where the header includes the content type of the body. The
response also includes a status, which is part of the uniform interface of HTTP
and encodes a general indication of how the request was processed.

Remember, a message exchange is always synchronous. This reduces the pos-
sible interaction patterns to send-receive and receive-reply. While it is tempting
to simplify the BPEL constructs into <send> and <receive> elements with the
complete handling of the request as child elements, the BPEL specification does
not appear to allow extension activities with child elements, hence we refrain from
doing so and stick with the tradtional <send>, <receive>, and <reply> constructs
without children. However, the newly introduced activities all have a messageEx-
change attribute by which the required data structures—as shown in Figure 5 are
referenced.

In Figure 6 the fragment from Figure 4 is completed to a complete
<onMessage> block. Notice the path attribute containing a relative URI template.
The given template is relative to the BPEL process, as each instance of the pro-
cess is assigned a URI itself. The exact details of the message the <onMessage>
activity is waiting for is described by reusing the <method> element of WADL [10].
Here, the only criteria is that the message is send as a POST. WADL itself is
quite descriptive and this descriptive power can be used to model pattern match-
ing on request, i.e. several <onMessage> activities waiting on the same URIs with
the same verb but different contents. The <reply> activity again references the
messageExchange data structure by attribute. Here, some convenience elements
are shown (<status> and <param>), their functionality could be simply mapped
to <assign> working on the data structure. However, this fragment shows how a



Towards Resource-Oriented BPEL 137

<rbpel:onMessage path="./item/new" messageExchange="createItem">

<wadl:method name="POST" />

<sequence>

<assign>

<copy>

<from>rbpel:generate-uri("./item/{itemNumber}")</from>

<to variable="newItemURI" />

</copy>

</assign>

<rbpel:reply messageExchange="createItem">

<rbpel:status>201</rbpel:status>

<rbpel:param name="Location" style="header">$newItemURI</rbpel:param>

</rbpel:reply>

</sequence>

</rbpel:onMessage>

Figure 6. Creating a shopping cart item

new URI is generated by template and returned to the requester in the Location
Header as outlined in the HTTP specification.

The complete BPEL for all functionality hidden in the Add Items activity of
Figure 2 is shown in Figure 7.

The loop—depicted by a curved arrow on the ”Add Items” activity in Fig-
ure 2–is mapped to a <repeatUntil> block. Upon receive a POST to the checkout
URI the loop is left by settint the commitRequest variable to true. Also, the new
internal state of the resource modeled by BPEL process outlined has a URI by
itself. The requesting client is redirect to that URI by issuing a 303 status, again
as outlined by the HTTP specification.

5. Related work

There are many other language available as a foundation to modeling resource
behavior, such as Web Service Choreography Interface (WSCI) [17] or the Web
Service Conversation Language (WSCL) [18]. However, mind share is vital to lan-
guage selection and BPEL seems to be able to form a common ground for various
interest groups. Also, even though some constructs my be expressed more elegantly,
BPEL is designed as an open, extensible language laying a clear track of how to
integrate the required functionality, as shown in the course of this paper. Describ-
ing static resource interfaces, the author is unaware of any alternative to the Web
Application Description Language. On the other hand, WADL can be seen as a
mashup of HTTP, RelaxNG [19], and XML Schema [20], so these standards should
be mentioned here as well.



138 Overdick

<repeatUntil>

<scope

xmlns:rbpel="http://bpt.hpi.uni-potsdam.de/ns/rbpel"

xmlns:wadl="http://research.sun.com/wadl/2006/10">

<eventHandlers>

<rbpel:onMessage path="./item/{itemNumber}" messageExchange="itemShow">

<wadl:method name="GET" />

<!-- return representation of item $itemShow.itemNumber -->

</rbpel:onMessage>

<rbpel:onMessage path="./item/{itemNumber}" messageExchange="itemUpdate">

<wadl:method name="PUT" />

<!-- update and return item $itemUpdate.itemNumber -->

</rbpel:onMessage>

<rbpel:onMessage path="./item/{itemNumber}" messageExchange="itemDelete">

<!-- delete item $itemDelete.itemNumber -->

</rbpel:onMessage>

<rbpel:onMessage path="./item/new" messageExchange="createItem">

<wadl:method name="POST" />

<sequence>

<assign>

<copy>

<from>rbpel:generate-uri("./item/{itemNumber}")</from>

<to variable="newItemURI" />

</copy>

</assign>

<rbpel:reply messageExchange="createItem">

<rbpel:status>201</rbpel:status>

<rbpel:param name="Location" style="header">$newItemURI</rbpel:param>

</rbpel:reply>

</sequence>

</rbpel:onMessage>

</eventHandlers>

<pick>

<rbpel:onMessage path="./checkout" messageExchange="transfer_to_payment">

<wadl:method href="/wadl/post/method/definition" />

<sequence>

<assign>

<copy>

<from>true</from>

<to>$commitRequest</to>

</copy>

</assign>

<rbpel:reply messageExchange="transfer_to_payment">

<rbpel:status>303</rbpel:status>

<rbpel:param name="Location" style="header">"./checkout"</rbpel:param>

</rbpel:reply>

</sequence>

</rbpel:onMessage>

<onAlarm>

<for>’2h’</for>

<exit/>

</onAlarm>

</pick>

</scope>

<condition>$commitRequest</condition>

</repeatUntil>

Figure 7. Complete example of ”Add Items” activity



Towards Resource-Oriented BPEL 139

6. Summary and Outlook

In the course of this paper, resource orientation was introduced as a viable subset
of service orientation. Resource as such are complex state machines, exposing one
or more uniform interfaces over time. This can be formally expressed as a complex
state machine. The main contribution of this paper is to identify BPEL as a suited
candidate for modeling such state machines and the necessary modifications to
BPEL were outlined. All of these modifications are in the scope of the extension
mechanisms of the BPEL specification.

The next steps will involve a exact specification of the extensions outlined
and a reference implementation, possibly building upon an existing BPEL engine.
This possibility is one of the strong arguments for using BPEL along with the
already strong mind share of the BPEL community.

At the same time, a resource-oriented BPEL can be the foundation for a next-
generation web framework centering around process models as the core artefact of
application design.

References

[1] Burbeck, S.: The tao of e-business services (2000) http://www-128.ibm.com/

developerworks/library/ws-tao/.

[2] Matthew, C., Laskey, K., McCabe, F., Brown, P.F., Metz, R.: Reference Model
for Service Oriented Architecture 1.0. Technical Report Committee Specification
1, OASIS Open (2006) http://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=soa-rm.

[3] Gardner, D.: Soa wikis, soa for saas, and the future of business applications. Technical
report, Interarbor Solutions (2007) http://blogs.zdnet.com/Gardner/?p=2395.

[4] Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. PhD thesis, University of California, Irvine (2000) Chair-Richard N. Taylor,
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[5] Berners-Lee, T.: Www: Past, present, and future. IEEE Computer 29 (1996) 69–77

[6] IBM: Web services architecture overview (2000) http://www-128.ibm.com/

developerworks/webservices/library/w-ovr/.

[7] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services descrip-
tion language (wsdl) 1.1. Technical report, W3C (2001) http://www.w3.org/TR/

wsdl.

[8] Jordan, D., Evdemon, J.: Oasis web services business process execution lan-
guage (wsbpel) (2007) http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.

0-OS.html.

[9] Overdick, H.: The resource-oriented architecture. In: 2007 IEEE Congress on Services
(Services 2007). (2007) 340–347 http://doi.ieeecomputersociety.org/10.1109/

SERVICES.2007.66.

[10] Hadley, M.: Web application description language (2006) https://wadl.dev.java.
net/.



140 Overdick

[11] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee,
T.: Hypertext transfer protocol – http/1.1. Technical report, The Internet Engineer-
ing Task Force (1999) http://www.ietf.org/rfc/rfc2616.

[12] T.Berners-Lee, R.Fielding, L.: Uniform resource identifiers (uri): Generic syntax.
Technical report, The Internet Engineering Task Force (1998) http://www.ietf.

org/rfc/rfc2396.txt.

[13] Helland, P.: Life beyond distributed transactions: an apostate’s opinion. In: Third
Biennial Conference on Innovative Data Systems Research. (2007) http://www-db.
cs.wisc.edu/cidr/cidr2007/papers/cidr07p15.pdf.

[14] Großkopf, A.: xbpmn. formal control flow specification of a bpmn-based process exe-
cution language. Master’s thesis, Hasso Plattner Institut and SAP Research Brisbane
(2007)

[15] Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: Bpel light. In: 5th
International Conference on Business Process Management (BPM 2007), Springer
(2007)

[16] Gregorio, J., Hadley, M., Nottingham, M., Orchard, D.: Uri template. Technical
report, IETF (2008) http://bitworking.org/projects/URI-Templates/.

[17] Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K., Orchard, D., Pogliani,
S., Riemer, K., Struble, S., Takacsi-Nagy, P., Trickovic, I., Zimek, S.: Web service
choreography interface (wsci). Technical report, W3C (2002)

[18] Banerji, A., Bartolini, C., Beringer, D., Chopella, V., Govindarajan, K., Karp, A.,
Kuno, H., Lemon, M., Pogossiants, G., Sharma, S., Williams, S.: Web services con-
versation language (wscl). Technical report, W3C (2002)

[19] Clark, J., Makoto, M.: Relax ng specification. Technical report, OASIS Open (2001)

[20] Thompson, H.S., Sperberg-McQueen, C.M., Gao, S., Mendelsohn, N., Beech, D.,
Maloney, M.: Xml schema 1.1. Technical report, W3C (2006)

Hagen Overdick
Research School
Hasso Plattner Institute for IT Systems Engineering
at the University of Potsdam
D-14482 Potsdam, Germany
e-mail: hagen.overdick@hpi.uni-potsdam.de



Whitestein Series in Software Agent Technologies, 141–157
©c 2008 Birkhauser Verlag Basel/Switzerland¨

SSL-over-SOAP: Towards a Token-based Key
Establishment Framework for Web Services

Sebastian Gajek, Lijun Liao, Bodo Möller and J¨ org Schwenk¨

Abstract. Key establishment is essential for many applications of cryptog-
raphy. Its purpose is to negotiate keys for other cryptographic schemes,
usually for encryption and authentication. In a web services context, WS-
SecureConversation has been specified to make use of negotiated keys. The
most popular key establishment scheme in the Internet is the (handshake
protocol of the) Secure Socket Layer or Transport Layer Security protocol
(SSL/TLS). However, SSL/TLS has primarily been designed to secure HTTP,
by encrypting and authenticating TCP connections. It is thus not usable
to negotiate keys in SOAP connections with intermediaries. We propose
SSL-over-SOAP, a family of key establishment protocols for Web services.
It is based the design of the SSL handshake, so security analysis results for
standard SSL/TLS apply to our new proposal. We have implemented this
protocol in the framework of WS-Trust and WS-SecureConversation.

Keywords: Web Services Security, Key Establishment Protocol

1. Introduction

1.1. Motivation

Security is important for any distributed computing environment: Many passive
and active attacks have been described against such systems. Particularly challeng-
ing are service-oriented environments where the architecture is implemented based
on a range of technologies, and where applications are created as loosely coupled
and interoperable services. The Internet and its underlying infrastructure is the
most pervasive IT system ever built—accordingly, more and more applications are
implemented as Web services. Thus, preserving the privacy and integrity of these
messages in service-oriented architectures becomes a challenging part of business
integration, and secure message exchange a requirement for the proliferation of
Web services.



142 Gajek, Liao, Möller and Schwenk¨

Because of the complexity of XML based security standards, the well-known
Secure Socket Layer (SSL) or Transport Layer Security (TLS)1 protocol has be-
come a de facto security standard for Web services. SSL provides a protected TCP
channel that can be used by higher order protocols, such as e.g. SOAP over HTTP
for Web Services. Because of its eminent role for the Web (as well as for other In-
ternet protocols), the SSL protocol has been examined intensely [13–15], without
finding any severe security flaws.

However, classical SSL has some shortcomings when deployed in the context
of Web Services. First, SSL is a point-to-point security protocol. Web Services,
by contrast, are loosely coupled applications: that is, messages may pass through
multiple intermediary nodes, and the bindings to service endpoints may change. In
order to establish a secure SSL channel between two service endpoints, each inter-
mediary connection must be protected by SSL, and the application must be able
to decide which of the intermediary SSL certificates are trustworthy. Second, SSL
is a transport layer security protocol: SSL-protected messages are secured while in
transit on the network; after reception, the message plaintext (as recovered by the
SSL layer) is forwarded to the application logic. Third, SSL is not aware of the
message structure, so messages are protected in an all-or-nothing fashion. Higher
layers do not directly benefit from SSL session keys. One benefit of XML secu-
rity technologies, in contrast, is to provide element-wise signing and encryption:
intermediaries can read and alter information only as they are permitted to.

1.2. Motivating Example

Consider an example where a business flow requires passing an invoice through
multiple parties. The invoice contains some vital information that only the ultimate
receiver is allowed read; however, certain parts of the invoice are to be processed by
intermediary parties. SSL fails because intermediaries have access to the complete
invoice in plaintext (or they would not be able to examine the invoice at all). By
contrast, SSL-over-SOAP allows for establishing a session key between sender and
ultimate receiver. This key can be used to authenticate and encrypt the invoice
information to protect it from intermediaries. The sender can choose which pieces
of information to encrypt.

1.3. Contribution

The WS-* family of security schemes [1] aims to provide a security framework
that addresses all the security issues around web services. In particular, WS-
SecureConversation [2] defines how to use session keys in WS-Security, but does
not specify any specific key exchange protocols.

In this work, we close this gap by re-specifying the SSL handshake protocol
and the SSL record layer at the SOAP level, creating a new cryptographic protocol
to be used with WS-SecureConversation. We thus do not need the “classical” SSL

1TLS is the official name for the more recent protocol versions in the SSL/TLS family. We use
the traditional name SSL as an umbrella term since our ultimate goal is to move the protocol
ideas away from the transport layer.



SSL-over-SOAP 143

at TCP level any more. Instead, we are able to provide all security services offered
by SSL (confidentiality, authentication, security of key establishment) at SOAP
level.

Incorporating the practically proven SSL protocol technology into the
WS-* family of security scheme allows us to design a protocol framework that
benefits from both technologies.

The main contribution of the SSL protocol to the web services world is secu-
rity. In SSL, key agreement and authentication are closely connected, and explicit
key confirmation is provided by the Finished messages at the end of the hand-
shake protocol. By contrast, it is easy to show the the authenticated variant of
the Diffie-Hellman key exchange [7] is vulnerable to man-in-the-middle attacks in
combination with XML wrapping attacks [12].

We propose SSL-over-SOAP as the first member of a family of practical Web
Services key establishment protocols. SSL-over-SOAP provides sufficient protocol
flexibility for the security requirements of today’s business models. As a first step,
we have implemented the following:

• The SSL-over-SOAP handshake protocol is a key transport protocol based on
X.509 binary security tokens. It is implemented in the WS-Trust framework.

• The SSL-over-SOAP record layer protects the complete body of SOAP mes-
sages, and the Finished messages. It provides confidentiality (XML encryp-
tion) and authentication (HMAC from XML signature) within the framework
of WS-SecureConversation.

1.4. Related Work

Hada and Maruyam [9] propose a session authentication protocol for Web Services.
Although they consider the aspect of session resumption, they do not design a
key establishment scheme. Follow-up work by Zhang and Xu [18] similarly does
not regard key establishment. Herzberg [10] introduces the secure XML transport
protocol (SeXTP), which is a ping pong protocol based on XML Encryption and
XML Signature. The work does not fit into the Web Services terminology, as it
dates back from a time when the WS-standards were in pending state. Although
the author illustrates that present XML security standards are capable to negotiate
a shared secret, [10] only mentions the Diffie-Hellman key exchange. In contrast to
this, our protocol provides a framework for a wide variety of different algorithms
and authentication mechanisms, and is open to extensions. Fang et al. [8] have
implemented the AuthA protocol for Web services. AuthA is a password-based
authenticated key exchange protocol. This protocol is restricted to the use of
passwords. By contrast, SSL-over-SOAP provides protocol flexibility. That is, SSL-
over-SOAP captures the requirements of different security models and allows the
use of modular authentication mechanisms, such as passwords, digital certificates,
or Kerberos ticket.



144 Gajek, Liao, Möller and Schwenk¨

1.5. Organization

The paper is structured as follows. We shortly review the relevant Web Services
technologies in Section 2. Then, we present our proposal by first formulating SSL
in terms of SOAP message exchanges in Section 3, and subsequently describing
a concrete instantiation of this framework in Section 4. We discuss the protocol’s
security in Section 5. Finally, we conclude our work in Section 6.

2. WS-* Building Blocks

2.1. Notation

We use the following XML syntax style:
• Instead of writing an element <AAA></AAA>, we drop the tag from the
closing bracket and write <AAA></> or <AAA/>.

• When writing an element that spans several lines, we rely on inden-
tation to delimit the body, omitting the closing bracket. For example,
<AAA><BBB></BBB></AAA> is written as

<AAA<< >AA
<BBB /<< >

• We omit the namespace definition in the messages and use the following
prefixes:

Prefix Namespace
ds http://www.w3.org/2000/09/xmldsig#

soap http://schemas.xmlsoap.org/soap/envelope/
tls http://www.example.org/tls#

wsse http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd

wst http://schemas.xmlsoap.org/ws/2005/02/trust
wsc http://schemas.xmlsoap.org/ws/2005/02/sc
wsu http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd
xenc http://www.w3.org/2001/04/xmlenc#

2.2. SOAP and WS-Security

SOAP is a mechanism for inter-application communication between systems across
the Internet, where system implementations can be written in arbitrary languages.
SOAP messages are in XML to allow the exchange of structured information.

WS-Security [3] describes how to use XML Signature [17], XML Encryp-
tion [16], and security tokens in SOAP messages. (Note that [17] specifies the use
of symmetric-key authentication, not just public-key digital signatures: The term
“signature” or “digital signature” is extended to cover symmetric authentication.)
To this purpose, WS-Security defines a <Security> element to be added to the



SSL-over-SOAP 145

SOAP header as a container for all security related content. For WS-Security, it
is strongly recommended to identify signed elements via ID attributes (not via
XPath expressions). A typical WS-Security message is as follows:

<soap : Envelope>
<soap : Header>

<wsse : Secur i ty/>
<soap : Body>

2.3. WS-SecureConversation

WS-SecureConversation (the Web Services Secure Conversation Language) spec-
ifies secure communication between services. It defines the message structure for
establishing and sharing security contexts, and for deriving keys from security con-
texts. As with WS-Security, WS-SecureConversation is only a building block and
does not provide a complete security solution.

The core element of WS-SecureConversation is the
<wsc:SecurityContextToken> element. It consists of the mandatory child
element <wsc:Identifier> and several optional elements. The security context is
addressed by a UUID specified in <wsc:Identifier>.

2.4. WS-Trust

WS-Trust enables applications to construct trusted SOAP message exchanges,
which is determined by security tokens. A typical security token request consists
of:

<wst : RequestSecurityToken Context ? . . . >
<wst : TokenType/>?
<wst : RequestType/>
. . .

The optional element <wst:TokenType> describes the requested token type.
The mandatory element <wst:RequestType> specifies the class of func-
tion. It allows to add additional elements for the special purpose. The
<wst:RequestSecurityTokenResponse> specifies the response to a security token
request and is used to retrieve a security token.

3. SSL-over-SOAP Framework

3.1. Design Goals

We lift the SSL framework from the transport layer to the world of Web Ser-
vices, using the WS-* framework. We use SOAP instead of TCP for handshake
messages transfer. WS-Trust and WS-SecureConversation provide the framework



146 Gajek, Liao, Möller and Schwenk¨

to describe handshake protocol messages, and WS-Security allows us to put se-
curity related metadata into the <Security> header element. Our specification of
SSL-over-SOAP complies with the recent version of SSL, namely TLS 1.1 [6].

For the handshake protocol, we put the handshake messages into payloads
of the SOAP exchange, such that all elements are contained in the body part of
the SOAP message—never in the header. This is important to allow us to dupli-
cate the renegotiation feature of the original SSL protocol: An SSL handshake can
also be carried out over a connection that is already protected using SSL/TLS
(for example, to transfer client certificates in encrypted form). In the case of SSL-
over-SOAP, this means that we want to be able to apply WS-Security and WS-
SecureConversation even to those SOAP messages constituting a new handshake.
In such a situation, the cryptographic parameters used in the WS-Security header
stem from the original session, while the parameters of the next session are nego-
tiated using the handshake protocol.

Additionally, we define how the Finished message is generated. In the
SSL/TLS standards, this is done by computing a pseudorandom function tak-
ing as input the exchanged secret and a concatenation of all message bytes ex-
changed for the current handshake, and then sending this message over the new
cryptographically secured channel. Such authentication is important to thwart
man-in-the-middle attacks: If an attacker has modified some handshake message
to influence parameter negotiation, then verifying the peer’s Finished messages
will reveal that something is wrong (assuming that only ciphersuites providing
reasonably strong authentication are ever negotiated).

In SSL-over-SOAP, we use the same pseudorandom function for the Finished
message. Its inputs are the new master secret and the concatenation of the (se-
rialized canonicalized) bodies of the SOAP messages for the handshake. Putting
parts of the handshake messages into the SOAP header instead of the body might
make the protocol vulnerable to attacks, or could lead to a much more complex
computation of the Finished message (see Section 5 for more discussions).

3.2. ClientHello (Message 1)

For convenience, we will refer to the initiating service as “client” and to the re-
sponding service as “server”, thus adopting SSL terminology. In SSL-over-SOAP,
the initial message is the ClientHello (Fig. 1). Using the framework of WS-
Trust, we embed the messages into the <wst:KeyExchangeToken> within the
<wst:RequestSecurityToken> element. The <wst:RequestKET> indicates that
an additional message from the server is required to complete the key establish-
ment. The <wst:RequestSecurityToken> has an attribute @tls:Id with a UUID
value so that we can reference to this message later.

The <tls:ClientHello> specifies the SSL version of the client
(<tls:Version>), the ciphersuites (<tls:CipherSuites>) and compression methods
(<tls:CompressionMethods>) as well as the client’s nonce (<wst:Entropy>). The
version number 3.2 indicates that TLS version 1.1 is used [6, Section 6.2.1]. While
the ciphersuite in SSL is identified by two bytes, it is identified here by a URI.



SSL-over-SOAP 147

For example, the ciphersuite TLS RSA WITH AES 256 CBC SHA-1 is identified
by http://www.example.org/tls#tls RSA with AES256 SHA-1.

1 <soap :Enve lope>
2 <soap:Body>
3 <wst :RequestSecur i tyToken t l s : I d=’ uuid:UUID−msg1 ’>
4 <wst:TokenType> . . . / sc / s c t</>
5 <wst:RequestType> . . . / t ru s t /KET<TT />
6 <wst:RequestKET/>
7 <wst:KeyExchangeToken>nn
8 < t l s : C l i e n tH e l l o>
9 <t l s : V e r s i o n>3 .2</>

10 <t l s :C i p h e r S u i t e s>
11 <t l s :C i p h e r S u i t e>. . .# tls RSA with AES256 SHA1</>
12 <t ls :Compress ionMethods>
13 <t ls :CompressionMethod> . . .# compres s i on nu l l</>
14 <wst:Entropy>
15 <wst :B inarySec r e t Type=’ . . . / Nonce ’>M7o9 . . .MO0o=<== />

Figure 1. ClientHello message sent from Client to Server in
order to initiate the handshake

3.3. ServerHello, Certificate, ServerKeyExchange, CertificateRequest (Message
2)

The second message is the server’s response to the security token request (Fig. 2).
The response contains mandatory and optional elements. As with SSL, the choice
of elements depends on the ciphersuite selected (<tls:ServerKeyExchange>) and
on whether the server requests client authentication (<tls:CertRequest>).

<tls:ServerHello> contains the SSL protocol version of the server
(<tls:Version>), the session ID (<tls:SessionID>), the ciphersuite se-
lected by the server (<tls:CipherSuite>), the compression method
(<tls:CompressionMethod>), and the server nonce (<wst:Entropy>). The
session ID is adopted from SSL to manage the session and used to execute the
abbreviated handshake.

Fig. 2 illustrates an example message where client and server are mutually
authenticated on the basis of X.509v3 Certificates. Such certificates are handled
by including a <wsse:BinarySecurityToken> into the <tls: Certificates> element.
The type X509PKIPathv1 indicates that this token specifies a certificate chain.

<tls:ServerKeyExchange> would contain key material for DH key exchange.
In Fig. 2, client and server opt for key transport based on RSA where the server’s
public key is provided by the certificate. Hence, <tls:ServerKeyExchange> is an
empty tag, and could be omitted.

The <tls:CertificateRequest> element is used to signal the client that is has
to authenticate using a X.509 security token. The tag contains security policies



148 Gajek, Liao, Möller and Schwenk¨

which specify the client certificate’s requirements. In Fig. 2, the server requires
client authentication and opts for a client certificate that is issued for RSA signa-
tures from the Certificate Authority Test Root CA.

The SSL/TLS message ServerHelloDone serves only as a delimiter. We omit
ServerHelloDone in SSL-over-SOAP, since we combine multiple SSL elements into
one <wst:KeyExchangeToken>.

1 <soap :Enve lope>
2 <soap:Body>
3 <wst:RequestSecurityTokenResponse t l s : I d=’ uuid:UUID−msg2 ’>
4 <wst:TokenType> . . . / t r u s t /KET<TT />
5 <wst:RequestedSecur ityToken>
6 <wst:RequestKET/>
7 <wst:KeyExchangeToken>nn
8 <t l s : S e r v e rH e l l o>
9 <t l s : V e r s i o n>3 .2</>

10 <t l s : S e s s i o n ID>Vz2e . . . 4WU=UU <== />
11 <t l s :C i p h e r S u i t e>. . .# tls RSA with AES256 SHA1</>
12 <t ls :CompressionMethod> . . .# compres s ion nu l l</>
13 <wst:Entropy>
14 <wst :B inarySecre t Type=’ . . . / Nonce ’>ihsK . . . 7CYA=<== />
15 <t l s :ServerKeyExchange>
16 < t l s : C e r t i f i c a t e s>
17 <wsse :BinarySecur ityToken
18 ValueType=’ . . .# X509PKIPathv1 ’>MIIC . . . iw==<== />
19 <t l s :Ce r tReque s t>
20 <t l s :C e r t t y p e>. . .# r s a s i g n</>
21 <t l s :CAs>
22 <t l s :CA>CN=Test Root CA>> <AA />

Figure 2. ClientHello, ServerKeyExchange, Certificate,
and CertificateRequest message sent from Server to Client.
Server and Client agree on the ciphersuite
“#tls RSA with AES256 SHA1”.

3.4. ClientKeyExchange, Certificate, CertificateVerify, Finished (Message 3)

Here the message structure becomes a little more complicated, since
we have to combine unprotected parts (ClientKeyExchange, Certificate,
CertificateVerify) and protected parts (Finished) into one SOAP message
in order to comply with the SSL protocol specification (Fig. 3).

The <tls:PreMasterSecret> (lines 34–37) within <tls:ClientKeyExchange>
(lines 33–37) contains the encrypted premaster secret (recall that client and server
negotiated the RSA ciphersuite). The premaster secret is encrypted with the
server’s public key. Since client authentication has been requested in the pre-
vious message, the client makes use of the <tls: Certificates> element (lines



SSL-over-SOAP 149

38–40) to send a certificate chain containing its certificate and the certifica-
tion authority’s certificates. The <tls: CertificateVerify > (lines 41–50) has only
one child element, <ds:Signature> (lines 42–50). For more details, see Sec-
tion 4. The <ds:Reference> elements in lines 46–47 reference the exchanged mes-
sages (messages 1 and 2) via the @URI with the prefix urn:uuid. The last two
<ds:Reference> elements in lines 48–48 reference the <tls:ClientKeyExchange>
(lines 33–37) and the <tls: Certificates> (lines 38–40) in the same message. The
<wst:SecurityContextToken> (lines 28–29) specifies that the master secret should
be addressed by the UUID specified, UUID-sct.

After choosing a premaster secret, the client computes the master secret and
derives the session keys. In order to confirm the correct generation of session keys,
it computes the content Finished message as follows:

client finished = PRFmaster secret

(
“client finished”,

MD5 (exchanged messages) || SHA1 (exchanged messages)
)
[0...11]

In the SSL framework, the exchanged messages are those visible at the handshake
layer and do not include record layer headers. Hence in SSL-over-SOAP, the ex-
changed messages are the SOAP bodies in messages 1 and 2, and the SOAP body
except the <tls:Finished> in this message. The SOAP bodies are first canonical-
ized with the algorithm Exclusive C14N and then concatenated. The result is then
used as the input of the hash algorithms MD5 and SHA-1.

The client then constructs the Finished message by encoding the result of
the TLS PRF: <tls:Finished>Base64(client finished)</>. The <tls:Finished> is
then encrypted and signed in the following way:

The client inserts a <wsse:Security> (lines 3–23) into the SOAP header
<soap:Header>. Then, the client adds a <wst:SecurityContextToken> (lines 4–5)
to <wsse:Security>. This token has the same properties as the token within the
SOAP body (lines 28–29). However, we may not move this security token to the
body, since only if it is located in the SOAP header, the token can be used for de-
cryption and signature verification. Then, the client computes a derived key token
<wsc:DerivedKeyToken> that specifies the client write key, and is used to encrypt
the content of <tls:Finished> (lines 51–56).The <wsc:DerivedKeyToken> (lines
17–21) and a new <xenc:ReferenceList> (lines 22–23) that locates the encrypted
<tls:Finished> are then added to the <wsse:Security> element. Finally, the client
computes a derived key token <wsc:DerivedKeyToken> (lines 6–10) that speci-
fies the client write MAC secret used to sign the encrypted <tls:Finished> with
the client MAC secret. The signature is represented by a <ds:Signature> (lines
11–16). Both elements are then added to the <wsse:Security>.

Note that in message 3 and in message 4 (see Sect. 3.5), the session ID is added
to the <wst:KeyExchangeToken> so that the receivers (the server in message 3
and the client in message 4) can chain the messages.



150 Gajek, Liao, Möller and Schwenk¨

1 <soap :Enve lope>
2 <soap:Header>
3 <wss e : S e cu r i t y>
4 <wsc:SecurityContextToken wsu:Id=’ Id−s c t ’>
5 <ws c : I d e n t i f i e r>uuid:UUID−s c t</>
6 <wsc:DerivedKeyToken wsc:Algorithm=’ . . .#TLS

/
PRF ’

7 wsu:Id=’ Id−clientMACKey ’>
8 <wsse :Secur i tyTokenRefe rence>
9 <wsse :Re fe rence URI=’#Id−s c t ’ />

10 <wsc:Length>20</><wsc :O f f s e t>0</
//
>

11 <d s : S i gna tu r e>
12 <d s : S i gn ed In f o>
13 <ds :Re f e rence URI=’#Id−f i n i s h ed ’>
14 <ds:KeyIn fo>
15 <wsse :Secur i tyTokenRefe rence>
16 <wsse :Re f e rence URI=’#Id−clientMACKey ’ />
17 <wsc:DerivedKeyToken wsc:Algorithm=’ . . .#TLS PRF ’

/

18 wsu:Id=’ Id−clientWrtKey ’>
19 <wsse :Secur i tyTokenRefe rence>
20 <wsse :Re f e rence URI=’#Id−s c t ’ />
21 <wsc:Length>32</><wsc :O f f s e t>40</>
22 <x en c :Re f e r en c eL i s t

/
>

23 <xenc :DataReference URI=’#Id−EncFinished ’ />
24 <soap:Body>
25 <wst:RequestSecurityTokenResponse>
26 <wst:TokenType> . . . / t r u s t /KET<TT />
27 <wst:RequestedSecur ityToken

/ /
>

28 <wsc:SecurityContextToken>
29 <ws c : I d e n t i f i e r>uuid:UUID−s c t</>
30 <wst:KeyExchangeToken>nn
31 <t l s : S e s s i o n ID>Vz2e . . . 4WU=UU <== />
32 <wst:RequestKET/>
33 <t l s :Cl ientKeyExchange Id=’ Id

/
−cke ’>

34 <t l s :P r eMas t e rS e c r e t>
35 <xenc:EncryptedKey>
36 <xenc:EncryptionMethod Algorithm=’ . . .# rsa−1 5 ’ />
37 <ds :KeyIn fo /><xenc:CipherData />
38 < t l s : C e r t i f i c a t e s Id=’ Id

/
−c e r t s ’>

39 <wsse :BinarySecur ityToken ValueType=
40 ’ . . .# X509PKIPathv1 ’>MIIC . . . y/Z/</>
41 < t l s : C e r t i f i c a t e V e r i f y>
42 <d s : S i gna tu r e>
43 <d s :S i gn ed In f o>
44 <ds :Canonica l izat ionMethod />
45 <ds:SignatureMethod Algorithm=’ . . .# rsa−sha1 ’ />
46 <ds :Re f e rence URI=’ urn:uuid:UUID−msg1 ’ />
47 <ds :Re f e rence URI=’ urn:uuid:UUID−msg2 ’ /

//
>

48 <ds :Re f e rence URI=’#Id−cke ’ />
49 <ds :Re f e rence URI=’#Id−c e r t s ’ />
50 <ds :S ignatu reVa lue>RR4p . . . vFvA=<== />
51 <t l s : F i n i s h e d Id=’ Id−f i n i s h e d ’>
52 <xenc:EncryptedData Id=’ Id−EncFinished ’>
53 <ds :KeyIn fo>
54 <wsse :Secur i tyTokenRe fe rence>
55 <wsse :Re fe rence URI=’#Id−clientWrtKey ’ />
56 <xenc:CipherData/>

Figure 3. ClientKeyExchange, Certificate, Certificate-
Verify, and Finished sent from Client to Server.



SSL-over-SOAP 151

3.5. Finished (Message 4)

The server’s <wst:RequestSecurityTokenResponse> contains the <tls:Finished>
message (see Fig. 4). To compute the content of the Finished message, the server
uses the same PRF function as the client except the following differences: 1) the label
is “server finished”; 2) for the exchanged message, we refer to the SOAP bodies
in messages 1, 2 and 3. In the SSL framework, the headers in the record layer are
not considered, hence we first decrypt the message 3 and use the decrypted SOAP
body (namely the <tls:Finished> is not encrypted).

The message allows the client to verify that the server has received all the
previous messages from the client. As with the previous message, the server’s
Finished has the same SOAP header structure, but differs in the keys used, i.e.
the server uses server writew MAC secret for the HMAC and server writew key for
the encryption.

1 <soap :Enve lope>
2 <soap:Header>( S imi la r as in Message 3)</>
3 <soap:Body>
4 <wst:RequestSecurityTokenResponse>
5 <wst:TokenType> . . . / t r u s t /KET<TT />
6 <wst:RequestedSecur ityToken>
7 <wst:KeyExchangeToken>nn
8 <t l s : S e s s i o n ID>Vz2e . . . 4WU=UU <== />
9 <t l s : F i n i s h e d wsu:Id=’ Id−Fin ished2 ’>

10 <xenc:EncryptedData Id=’ Id−EncFinished2 ’ />

Figure 4. Finished message sent from Server to Client that
confirms the negotiated ciphersuite and derived session keys.

4. A Token-based Protocol

We present additional details for a concreteWeb Services protocol that instantiates
the framework described in the previous section. Specifically, we show a protocol
variant using X.509 certificates as security tokens. The framework can similarly
be instantiated using other security token types, requiring other protocol variants:
for example, password-based authenticated key exchange using a scheme such as
“SOKE” [4] would use user name tokens. Recall that during the execution of the
protocol, the services endpoints may decide which authentication token to use.

The X.509v3 binary token authentication protocol is illustrated in Fig. 5.
The protocol’s goal is to negotiate a tuple of session keys between two services W1

and W1, while the services authenticate on the basis of X.509v3 binary tokens.
Assuming that in a setup stage the tokens have been stored in credential stores.
We denote the certified public pairs of W1 and W2WW by (pk1, sk1) and (pk2, sk2),
respectively.



152 Gajek, Liao, Möller and Schwenk¨

Web Service W1 Web Service W2WW
(pk1, sk1) (pk2, sk2)

Choose N1 ← {0, 1}∗ ClientHello: [N1, ..]−−−−−−−−−−−−−−−−−−→
ServerHello: [N2NN , sid, ...]

Certificate: [pk[[ 2]
CertificateRequest←−−−−−−−−−−−−−−−−−− Choose N2NN , sid ← {0, 1}∗

Choose kPMK ← {0, 1}∗

kMSK ← PRFkPMK
(′1′, N1 ||N2NN )

Symmetric keys: {kENC1 , kMAC1 , kENC2 , kMAC2 } ← PRFkMSK
(′1′, N1 ||N2NN )

Hsig ← Hash(... || ClientKeyExchange || Certificate)
H1 ← (Hash(... || Certificate || ClientVerify)
H2HH ← (Hash(... || ClientVerify || Finished)

SIG1 ← Signsk1
(Hsig)

F1FF ← PRFkMSK
(′1′, H1)

t1 ← HMACkMAC
1
(F1FF )

ClientKeyExchange: [Epk2(kPMK)]
Certificate: [pk[[ 1]

ClientVerify: [SIG1]
Finished: [EkENC

1
(F1FF , t1)]−−−−−−−−−−−−−−−−−−→

Verify (SIG1, pk1, Hsig)
ABORT if ⊥; else
Decrypt Epk2(kPMK)
Decrypt EkENC

1
(F1FF , t1)

Verify t1 = HMACkMAC
1
(F1FF )

ABORT if false; else
Verify F1FF = PRFkMSK

(′1′, H1)
ABORT if false; else
F2FF ← PRFkMSK

(′1′, H2HH )
t2 ← HMACkMAC

2
(F2FF )

Finished: [EkENC
2
(F2FF , t2)]←−−−−−−−−−−−−−−−−−−

Decrypt EkENC
2
(F2FF , t2) session keys ← accept

Verify t2 = HMACkMAC
2
(F2FF )

ABORT if false; else
Verify F2FF = PRFkMSK

(′1′, H2HH )
ABORT if false; else

session keys ← accept

Figure 5. Key establishment protocol based on X.509v3 tokens



SSL-over-SOAP 153

W1 initiates the handshake. It randomly chooses a client nonce N1 and
forwards this parameter to W2WW . Then, W1 chooses a nonce N2NN and appends to
the nonce its certified public key pk2. Upon receiving the message, W1 randomly
chooses a premaster secret kPMK and encrypts the premaster secret with the public
key pk2 from W2WW . The premaster secret kPMK is used to derive the master secret
kMSK, using the pseudo-random function PRF parameterized by the services’ nonces
and the labeling string “master secret”, abbreviated with “1” in the protocol
description. This is the pseudorandom function as specified by SSL. (Other PRF
constructions could be used.)

W1 applies the master secret kMSK to compute the tuple of session keys
{kENC1 , kMAC1 , kENC2 , kMAC2 }. Here kENCi and kMACi are encryption and authentication keys,
respectively.W1 feeds the pseudorandom function PRF with the labeling string “key
expansion” and the concatenation of the services’ nonces N1 and N2NN . In addition,
W1 proves its identity by signing the digest of previously negotiated messages SIG1

using its certified private key sk1. Finally, W1 confirms the session key generation,
using the pseudorandom function PRF that takes as input the master secret kMSK,
the string “client finish” and the hash value H1 of all previous messages. It
then authenticates and encrypts the output F1 with the session keys {kENC1 , kMAC1 }.

Upon receiving the message, W1 decrypts the premaster secret and verifies
SIG1, using the client’s certified public key pk1. It ensures that it is connected to
W1, i.e. it checks that W1 is a valid endpoint. Otherwise W2WW aborts the session. In
the positive case, W2WW derives in analogy to W1 the same master secret kMSK and the
same tuple of session keys {kENC1 , kMAC1 , kENC2 , kMAC2 }. Then, W2WW decrypts EkENC

1
(F1FF , t1)

and verifies that tag t1 := HMACkMAC
1
(F1FF ), where F1FF is the hash over all previous

messages. If this verification fails, W2WW aborts the protocol. Otherwise, W2WW confirms
the negotiated session keys using the pseudorandom function PRF that takes as
input the master key kMSK, the labeling string “server finish”, and the hash value
over all previous messages H2HH . It then authenticates and encrypts the output F2FF
with the session keys {kENC2 , kMAC2 }.

Finally, when W1 receives the message EkENC
2
(F2FF , t2), it decrypts the message

and verifies that tag t2 := HMACkMAC
2
(F2FF ), where F2FF is the hash value of all previ-

ously received messages. If the verification fails, W1 aborts the session. Otherwise,
W1 and W2WW start to use the negotiated keys {kENC1 , kMAC1 , kENC2 , kMAC2 } for symmetric
cryptography.

5. Security Discussion

Although our SSL-over-SOAP protocol on the outside looks very different from
standard transport-layer SSL/TLS, the handshake quite closely follows the origi-
nal protocol. We have replaced the SSL/TLS data formats using an XML-based
approach, but without changing the cryptographic essence. Thus, previous anal-
yses of the SSL/TLS handshake as appearing in [13–15] apply similarly: the long



154 Gajek, Liao, Möller and Schwenk¨

experience with SSL/TLS provides evidence that our proposal is cryptographically
sound as well.

To get a feel for the cryptographic approach in these protocols (both the
original SSL/TLS and our SSL-over-SOAP), observe that most of the handshake
negotiation is not cryptographically authenticated immediately. Besides signatures
in certificates, authentication appears only in the form of digital signatures if ei-
ther a ServerKeyExchange message is used (the server signs its key share along
with the client and server random nonces, thus binding the key share to the cur-
rent handshake), or if a CertificateVerify message is used (in which the client
presents a signature on the handshake so far to authenticate itself to the server).

Many typical scenarios involve neither message. An attacker can manipulate
the handshake protocol messages being exchanged to influence the handshake out-
come: For example, if the client offers multiple ciphersuites in the ClientHello
message, an attacker could remove the client’s preferred ciphersuites from the list,
leaving the server with fewer ciphersuites to choose from—such as just those ci-
phersuites that are the easiest to break. This changes only in the moment when the
Finished messages are exchanged. These messages cover the complete handshake
as well as the resulting master secret, thus retroactively authenticating everything
in the current handshake, provided that the master secret could only be known to
the legitimate protocol participants. (For example, in an RSA-based handshake,
the client encrypts the premaster secret for the server’s certified public key, thus
ensuring that the premaster secret and thus the master secret remains secret from
any attacker.) Accordingly, it is a fundamental security requirement the any party
engaging in a handshake only be willing to negotiate ciphersuites that can be as-
sumed to provide security in this sense. Any further security properties, notably
those of application data encryption, rely on this.

The Finished message is the first piece of data to be encrypted and au-
thenticated under the newly negotiated keys and algorithms, thus also providing a
verification that negotiation succeeded as intended and that both parties now are
indeed using compatible cryptography. Once the Finished messages have been
verified, application data is encrypted and authenticated the same way. In the
standard SSL/TLS protocol, symmetric authentication is added to the plaintext
before encryption.

This is done differently in our SSL-over-SOAP setting (see Fig. 3), where
symmetric authentication (following the XML Digital Signatures specification) is
applied to the ciphertext. This change is not cryptographically trivial, but does not
harm the protocol. The combination of symmetric authentication with encryption
can be considered authenticated encryption [5]. As discussed in [5], for general com-
position of an encryption scheme with a MAC, the “encrypt-then-MAC” approach
does the best job of providing authenticated encryption. (“MAC-then-encrypt” as
used in standard SSL/TLS in general has some problems, although these do not
apply to the standard ciphersuites [11].) That is, while SSL-over-SOAP differs
from standard SSL/TLS in its use of symmetric cryptography, the approach used
in SSL-over-SOAP is in fact cryptographically sound.



SSL-over-SOAP 155

6. Conclusion and Outlook

The SSL-over-SOAP approach provides a practical framework for key establish-
ment for Web Services. We use the experience with the practically proven SSL/TLS
protocol family for this purpose. This allows us to transfer SSL/TLS protocol ideas
to reuse them for Web Services, while giving us much more flexibility and security
than direct use of SSL/TLS at the transport layer. Our prototype implementation
has shown the feasibility of implementing complex cryptographic protocols within
the WS-* framework.

In this paper, we only looked at one basic form of an SSL handshake as
an example—an RSA-based handshake (involving an encrypted premaster secret).
The SSL-over-SOAP approach applies to many more protocol variants. For exam-
ple, we can directly transfer the work that has been done in [4] for password-based
authenticated key exchange in TLS, where parties rely on low-entropy secrets in-
stead of certificates for authentication. So besides X.509v3 binary token authenti-
cation as described in Section 4, we can also specify password token authentication
using the “SOKE” scheme from [4]. We plan to complete an open source software
library for SSL-over-SOAP, which will offer ciphersuites for both for X.509v3 bi-
nary token authentication and for password token authentication.

Our experiences with SSL-over-SOAP should be considered as a starting
point for the definition of other key agreement protocols, e.g., the IPsec OAKLEY
protocol, or group key agreement protocols. However, security analyses of such
protocols can not be directly transferred to the web services world, e.g. considering
XML wrapping attacks. Necessary conditions for key agreement protocols to be
secure in an XML context (e.g. explicit key confirmation) have to be researched.

References

[1] Security in a Web Services World: A Proposed Architecture and Roadmap,
April 7, 2002. http://www.ibm.com/developerworks/library/specification/

ws-secmap/.

[2] Web Services Secure Conversation Language Specification (WS-
SecureConversation), February 1, 2005. ftp://www6.software.ibm.com/software/
developer/library/ws-secureconversation.pdf.

[3] Web Services Security: SOAP Message Security 1.1 (WS-Security 2004) Work-
ing Draft, November 7, 2005. http://www.oasis-open.org/committees/download.
php/15251/oasis-wss-soap-message-security-1.1.pdf.

[4] M. Abdalla, E. Bresson, O. Chevassut, B. Möller, and D. Pointcheval. Provably¨
secure password-based authentication in TLS. In S. Shieh and S. Jajodia, editors,
Proceedings of the 2006 ACM Symposium on Information, Computer and Commu-
nications Security (ASIACCS’06), pages 35–45, 2006.

[5] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In T. Okamoto, editor, Advances
in Cryptology – ASIACRYPT 2000, volume 1976, pages 531–545, 2000.



156 Gajek, Liao, Möller and Schwenk¨

[6] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) protocol, version
1.1. RFC 4346. http://www.ietf.org/rfc/rfc4346.txt, 2006.

[7] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and Authenticated
Key Exchanges. Designs, Codes and Cryptography, 2(2):107–125, 1992.

[8] L. Fang, S. Meder, O. Chevassut, and F. Siebenlist. Secure password-based authen-
ticated key exchange for web services. In SWS ’04: Proceedings of the 2004 workshop
on Secure web service, pages 9–15, New York, NY, USA, 2004. ACM Press.

[9] S. Hada and H. Maruyama. Session authentication protocol for web services. In
SAINT-W ’02: Proceedings of the 2002 Symposium on Applications and the Inter-
net (SAINT) Workshops, page 158, Washington, DC, USA, 2002. IEEE Computer
Society.

[10] A. Herzberg. Secure XML transport protocol. Lecture Notes, Chapter 14,
2000. http://www.cs.biu.ac.il/~herzbea/Chapters/Chapter%2014%20XML%

20Security.pdf.

[11] H. Krawczyk. The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In J. Kilian, editor, Advances in Cryptology –
CRYPTO 2001, volume 2139, pages 310–331, 2000.

[12] M. McIntosh and P. Austel. Xml signature element wrapping attacks and counter-
measures. In ACM Workshop on Secure Web Services, 2005.

[13] J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of SSL 3.0. In 7th
USENIX Security Symposium, 1998.

[14] L. C. Paulson. Inductive analysis of the internet protocol TLS. ACM Transactions
on Computer and System Security, (3):332–351, 1999.

[15] B. Schneier and D. Wagner. Analysis of the SSL 3.0 protocol. In Proceedings of the
2nd USENIX Workshop on Electronic Commerce, 1996.

[16] W3C Consortium. XML-encryption syntax and processing, 2002. http://www.w3.
org/TR/xmlenc-core.

[17] W3C Consortium. XML-signature syntax and processing, 2002. http://www.w3.
org/TR/xmldsig-core.

[18] D. Zhang and J. Xu. Multi-party authentication for web services: Protocols, im-
plementation and evaluation. In Seventh IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC’04), pages 227–234, Los Alami-
tos, CA, USA, 2004. IEEE Computer Society.

Sebastian Gajek
Horst Görtz Institute for IT Security¨
Ruhr-Universität¨
44780 Bochum, Germany
e-mail: sebastian.gajek@nds.rub.de

Lijun Liao
Horst Görtz Institute for IT Security¨
Ruhr-Universität¨
44780 Bochum, Germany

e-mail: lijun.liao@nds.rub.de



SSL-over-SOAP 157

Bodo Möller¨
Horst Görtz Institute for IT Security¨
Ruhr-Universität¨
44780 Bochum, Germany
e-mail: bmoeller@crypto.rub.de

Jorg Schwenk¨
Horst Görtz Institute for IT Security¨
Ruhr-Universität¨
44780 Bochum, Germany
e-mail: joerg.schwenk@nds.rub.de



Whitestein Series in Software Agent Technologies, 159–170
©c 2008 Birkhauser Verlag Basel/Switzerland¨

A Framework for QoS-based Resource
Brokering in Grid Computing

Nadia Ranaldo and Eugenio Zimeo

Abstract. Effective and efficient exploitation of Grid computing facilities re-
quires advanced resource management systems to automatically and trans-
parently ensure the fulfillment not only of functional requirements but also of
non-functional ones. This paper presents a framework for brokering of Grid
resources, virtualized through Web Services, which can be dynamically con-
figured with respect to multiple syntactic and semantic description languages
and related matching strategies. Hence, it discovers and selects resources and
automatically allocates application tasks to them on the basis of both func-
tional and quality of service (QoS) requirements. In particular, the paper
presents a framework specialization which aims to select a pool of resources
whose overall performance allows for satisfying time and cost constraints for
the execution of an application partitioned in concurrent tasks according to
the data parallelism pattern.

Keywords. Resource Brokering, Grid Computing, Quality of Service.

1. Introduction

Thanks to the increasing amount of resources available across the Internet and to
improvements of wide-area network performance, in recent yeaff rs grid computing
is emerging as a viable paradigm to satisfy the continuous growth of computation
power demand, which often can not be fulfilled exploiting the inner resources of a
single organization. This trend is also promoting new business models for providers
that would deliver Grid computing functionalities, eventually customized on de-
mand, to host applications and to meet customer needs [1]. After a first generation
of solutions based on dedicated technologies, the diffusion of the Web has proposed
new architectural (Service-Oriented Architecture - SOA) and technological (Web
Services) approaches to address heterogeneity, distribution, security and interoper-
ability in large-scale systems. So, grid applications can be built as the composition
of independent services delivered by distributed providers [2]. In particular, a Grid



160 Ranaldo and Zimeo

workflow can be obtained composing domain dependent services, which virtualize
the access to specific and high-level utilities delivered by providers that leverage
high-performance dedicated clusters and software libraries for complex computa-
tions. In this case, functional matching strategies have to be adopted to discover
and select the services that deliver the required domain-dependent functionalities
for the enactment of the overall application.

More often, differently from B2B environments, Grid workflows orchestrate
services that virtualize the access to resources delivering low-level functionalities
(called Grid services), such as data acquisition, computation and storage. Such
services are characterized by heterogeneous assets and performance (due to hetero-
geneity and sharing of resources onto which they are deployed). As a consequence
quality of service (QoS) constraints assume a key role for scheduling resources in
the Grid since often the fulfillment of a computational goal is strongly tied to
desired performances (execution time, quality of results, reliability, throughput,
trust, etc.) and economic costs. For this reason, a lot of research has been de-
voted to the definition of infrastructure components able to hide heterogeneity
(computing power transparency) and to satisfy QoS constraints. In a connection
model based on middle agents, such as the model proposed by SOA, a fundamen-
tal role for achieving the desired transparency is played by resource managers,
matchmakers and brokers [3] that should be able to automatically discover avail-
able functionalities, choose and schedule the ones that satisfy the QoS constraints
specified by the user.

Many compute and data-intensive functionalities in grid workflows (such as
linear algebra, image processing, database searching, etc.) are characterized by
coarse-grained parallelism that allows for increasing performance by exploiting a
pool of distributed resources using parallel computing patterns such as simple par-
allelism, data parallelism and pipeline patterns [2]. A full exploitation of multiple
resources to execute Grid workflows will be reached if the following main issues
will be taken into account: (1) the adoption of scheduling techniques based on
multi-constrained matching strategies able to find a pool of resources satisfying
global constraints; (2) definition of formal languages for QoS description of Grid
services in order to avoid ambiguity during matching.

In this paper, we answer to these issues by proposing a framework for QoS
brokering of resources, virtualized through Web Services, and its customization.
The framework is able to automatically allocate application tasks based on the data
parallelism pattern adopting a time and cost-based matching strategy, called time
minimization matching strategy. We prove, moreover, through an experimental
analysis, the validity and accuracy of the system to search and select resources that
ensure execution times of real complex applications within prefixed constraints.
The resource broker is based on a service matchmaking framework [4] that is
extensible and customizable with respect to application scenario through dynamic
configuration of syntactic-, structural- and semantic-based discovery and matching
strategies, features that make it a suitable and easy-to-use environment to test new
scheduling strategies.



A Framework for QoS-based Resource Brokering in Grid Computing 161

The rest of the paper is organized as follows. Section 2 presents related work
and technology. Section 3 describes the matchmaking framework. Section 4 illus-
trates the matchmaker customization for the integration of the time minimization
matching strategy. Section 5 presents an experimental analysis of the matchmaking
framework. Finally Section 6 concludes the paper and introduces future work.

2. Related Work and Technology

Many Grid systems adopt system-oriented or application-oriented matching heuris-
tics that try to optimize respectively resource utilization and time execution with
respect to available resources [5] [6]. G-QoSM [7], a framework for QoS-based ser-
vice management, focuses on discovery of grid computing services on the basis of
QoS criteria and on mechanisms to guarantee QoS levels by means of ”contract-
based agreements” between service provider and service requester. However, G-
QoSM is based on a non standard extension of UDDI, which supports syntactic
QoS specifications included in non standardized WSDL-based descriptions of com-
putational services. In our work, instead, we aim to improve the matching process
adopting a standardizable and semantic-based description of QoS properties that
allow for well formalizing QoS knowledge and so for overcoming syntactic languages
limitations due to heterogeneity.

On the other hand, while standard technologies for Web services (SOAP,
WSDL and UDDI) define precisely syntax and data structure-based descriptions,
there are currently no standards for semantic description and query. A promising
solution is the one used in Semantic Web [8]. While for the specification of func-
tional requirements some proposals for standardization of ontologies have been
promoted, such as OWL-S [9] and WSMO [10], only recently some results have
been reached for QoS requirements. In particular, preliminary efforts can be found
in DAML-QoS Ontology [11], QoSOnt ontology [12] and more recently in WSMO
[13]. However, such approaches do not take into account QoS aspects that are
specific for Grid services and scientific workflows. In fact, beyond to classical QoS
attributes defined for a Web Service in a B2B environment, such as reliability,
cost, time response, etc., other specific QoS requirements could be specified for
Grid services, such as execution time for computational tasks, real-time capability
of data acquisition services, minimum storage capability for storage services, etc.
In this paper we adopt and extend to the Grid environment the onQoS ontol-
ogy proposed in [14] for the description of QoS attributes of Web Services. This
ontology tries to overcome limitations and scarce homogeneity of many semantic
models currently available for QoS description and uses metrics to describe and
control the QoS in the matching phase in a quantitative way.

In the context of workflow management, interesting works on QoS have been
proposed. A QoS-aware optimization matching approach for workflows is described
in [15]. Another approach proposed in [16] takes into account the static scheduling



162 Ranaldo and Zimeo

of workflows modelled as a pipeline of parameter sweep tasks aiming to a fine-
grained time optimization in a heterogeneous environment. On the other hand,
our approach differs from them because it better focuses on the definition of a
flexible brokering framework and matching strategies for QoS-driven and opti-
mized execution of scientific workflows characterized by data parallel tasks that
can concurrently exploit multiple resources.

A QoS brokering system which deals with cost constraints is the Grid Service
Broker (GSB) [17], which supports access to both computational and data Grids.
GSB can transparently access resources that are exposed by various low-level, Grid
middleware solutions, such as Globus Toolkit 4 and Alchemi [18] and published
on a custom XML-based Grid Market Directory registry. It supports deadline and
budget-constrained matching strategies for parameter sweet applications. Heuris-
tics adopted by GSB dynamically allocate a task at a time considering the current
state of resources until the budget is consumed. As a consequence they are not
useful for scheduling of generic data parallel tasks because do not deal the exe-
cution of all the required tasks within a specified deadline. On the contrary our
approach aims to grant task execution within specified deadline and budget. As a
consequence, it can be effectively adopted in a real environment in which reserva-
tion mechanisms (such as in ICENI [19]) grant the availability of a resource with
negotiated QoS.

3. Service Matchmaker Framework

The Service Matchmaker [4] is a key component of an ongoing project [20] that
aims at defining and implementing a flexible broker for service composition in
SOA-based environments. To ensure a high level of flexibility, the framework is
designed according to the component framework approach. Its basic infrastructure
is able to automatically manage and trigger well-defined activities for discovery and
matching of services (figure 1). The architectural skeleton is the Matchmaker Core,
whilst the specialization is realized through hot-spots that permit to customize
framework behaviours. The Matchmaker Core, at start-up, uses configuration files
to load components that specialize the framework behaviour. Because of the lack
of a unique standard language to describe different aspects of a service, the Service
Matchmaker supports multi-criteria discovery and matching strategies that can be
adopted on different service descriptions (including functional and non functional
aspects), each of which describing a specific aspect of a service and eventually
adopting a different language.

The matching process starts with a request containing the description of the
desired query service (called template) submitted by the user through the Match-
making API. As first step, theII Discovery Engine uses the search functionality
offered by the Registry to retrieve information on advertised services. The search
space of candidate services (called targets), initially reduced by the Discovery En-
gine, is further filtered by the Matchmaker Manager that is based on a Pipe and



A Framework for QoS-based Resource Brokering in Grid Computing 163

    Requester

Service Providers

Registry
Matchmaker

Core

M
at

ch
m

ak
in

g
A

P
I Discovery

Engine

Matchmaker Manager

...

Discovered

Targets

Customizable

Search Pipep

Matching

Filter

discovery query

discovery results

service

invocations

matchmaking

result

matchmaking

query

Matching

Filter

Figure 1. Service Matchmaker Framework.

Filter architecture. The Matchmaker Manager adopts two customizable Search
Pipes of Matching Filters, one for functional aspects and one for non-functional
aspects. The Search Pipes reduce more and more the service subspace, returning
finally a matching result between the template and the targets. The Search Pipes
are customized specifying the Matching Filters and their order. A Matching Filter
analyzes a specific description of the targets of the received subspace performing
a distinct matching strategy and is characterized by a Matching Engine and by a
Matching Function (figure 1). The Matching Engine receives the subspace of target
descriptions and takes care to return the targets that satisfy a matching strategy.
Typically, but not necessary, it associates the satisfaction degree of each target
with respect to specified requirements for that description invoking the Matching
Function, which returns a matching score for a specific strategy. The matching of
semantic description requires a component with automatic reasoning capabilities.
To this end, a Semantic Matching Function is configured with respect to an infer-
ence engine, through a Reasoner, a configurable component whose specialization
permits to define the reasoning engine more suitable to specific aims.

4. Service Matchmaker Specialization

The proposed QoS-based resource broker for Grid computing was implemented as
a specialization of the Service Matchmaker framework integrating the time mini-
mization matching strategy. This grid-oriented specialization is obtained through
an XML-based file that specifies description languages and related functional and
non functional matching strategies and through the implementation of the Discov-
ery Engine, Matching Engines, Matching Functions and Reasoners for semantic
matching strategies of Grid services that virtualize computational resources.

The family of description languages consists of: (1) WSDL (ver. 1.1), for ab-
stract syntactic description on service interface and concrete syntactic description
on bindings and endpoints; (2) OWL-S (ver. 1.1) for abstract descriptions of func-
tional and data semantics; (3) an ontology for QoS description, called GonQoS,



164 Ranaldo and Zimeo

for parameters’ description necessary to the time minimization matching strategy.
The Discovery Engine specialization interacts with the UDDI registry through the
UDDI proxy UDDI4J, [21], an open-source Java implementation of specification for
business registry and UDDI API. It performs a minimum functional search exploit-
ing UDDI meta-data on descriptions (for example taxonomy, categoryBag, etc.).
In particular, we use a functional aspect-based query which permits a category-
based discovery of Grid services through the NAICS taxonomy. The Search Pipe
for functional aspects uses three Matching Filters:
- Semantic matching on service operations based on OWL-S language;
- Semantic matching on service input/output and fault based on OWL-S language;
- Structural-syntactic matching on WSDL description of service operations.
The Search Pipe for non functional aspects uses two Matching Filters:
-Basic QoS-based Matching Filter (BQMF), for semantic matching on QoS metrics
based on GonQoS ontology;
- Aggregate QoS-based Matching Filter (AQMF), performing a QoS-based match-
ing strategy that returns the set of services which satisfy QoS requirements in an
aggregate manner.

Functional Matching Filters based on ontology descriptions and BQMF are
based on the matching approach proposed by Paolucci et al. [22]. The Matching
Engine used by such filters is called One-to-One Matching Engine. It invokes repet-
itively the associated Matching Function for each target of the target subspace,
assigns to each of them a matching result calculated by the Matching Function,
and filters the targets that do not satisfy query criteria. The structural-syntactic
Matching Function is based on the strategy proposed by Wang e Stroulia [23]. The
Matching Filter AQMF exploits the One-to-Many Matching Engine, which pro-
cesses all the target subspace returned from the previous filter BQMS to satisfy
QoS semantic parameters of a query expressed using GonQoS. The result returned
by the filter AQMF is based on the time minimization matching strategy, which
calculates the portion of the overall workload, specified in the query, to assign to
each target. The GonQoS ontology is accessed through a Reasoner which exploits
the Jena (ver. 2.4) framework [24] specialized in order to use the inference engine
Pellet (ver. 1.3) [25].

4.1. Time Minimization Matching Strategy

The time minimization matching strategy operates with tasks of a Grid application
that can be parallelized through the data parallelism pattern [2]: a pool of slaves
performs the overall workload, that is decomposed by the master into a high
number (but finite) of sub-tasks, called atomic tasks, that is the smallest parts
of the original workload that can be independently mapped and executed onto
different resources without casual precedence relationships.

The application is characterized by the computation size, which corresponds
to the total number N of atomic tasks, each of which is characterized by the same
complexity in terms of computation, data storage and data transfer aspects. A
Grid system is modelled as a finite set R = {R1, R2, .., RM} of available resources



A Framework for QoS-based Resource Brokering in Grid Computing 165

communicating through a fully connected wide-area network. Each resource Ri is
exposed as a Grid service and is characterized by the following parameters: (1) ti:
the total time for processing an atomic task; (2) ci: the cost of resource usage for
the processing of an atomic task; (3) gi: the maximum number of atomic tasks
(called also capacity) that can be assigned to the resource Ri. Time execution and
cost are assumed to be proportional to the amount of atomic tasks assigned to the
resource in a linear way. Following the Grid model proposed in [26], the bandwidth
on WAN links is not shared and each resource reaches the WAN through a LAN
link. In the case of resource reservation mechanisms, only one communication flow
goes through the link, that so receives a fixed bandwidth that can be predicted in
advance. The QoS parameters specified by the user to model a Grid service request
are: (1) the maximum execution time, which represents the deadline, called D, (2)
the total available budget, called B, and (3) the capacity of requested data parallel
task, corresponding to N .

The time minimization matching strategy regards the problem of finding the
”best” set of resources among which to distribute the workload N , so that the
aggregate cost for resource usage is lower than budget B (but not necessarily
the minimum) and that are able to complete the application execution as quickly
as possible (time minimization) and within deadline D. An iterative and low-
complexity heuristic to find a near-optimal solution is described in [27].

4.2. GonQoS for Grid Services

The GonQoS ontology for description of QoS parameters of Grid services is based
on onQoS [14], an ontology developed using OWL for QoS description, advertising
and query of Web services, designed in order to ensure simplicity while maintain-
ing flexibility and extensibility features. It is tied to the OWL-S ontology, which
permits to connect a QoS description to the corresponding functional one.

Following the classical approach for ontology definition, GonQoS is organized
into three extensible complementary levels. The upper ontology defines the onto-
logical language, which is the basic concepts to model Web service QoS, such as the
main properties and restrictions of QoS metrics. In this ontology, a QoS description
of a Web Service is represented by a set of QoS metrics. In particular it is necessary
to define a new entity of QoSMetric concept for each QoS parameter, that means to
define the measured parameter, the measurement scale, the measurement process
and one or more measured values belonging to the measurement scale. The middle
ontology is a specialization of the first one and is domain independent. Examples
are the specialization of QoS parameter of Availability, Performance, Reliability,
Cost and Capacity categories. Performance is further specialized in Throughput,
Response Time, Latency, etc. The low ontology, that contains domain-dependent
specializations of the ontology, defines some grid-specific concepts for QoS defini-
tion (see figure 2). The QoS Parameters to characterize query, advertised services
and returned result for the time minimization matching strategy are the following.
- grid-UnitExecutionTime (seconds): for query: maximum interval time within
which a task has to be executed; for advertising: interval time required to execute



166 Ranaldo and Zimeo

QoSParameter

Cost Security Capacity Performance Reliability

grid: UnitCost

isMeasureBy Instance Simple
RatioMetric

grid:Capacity

isMeasureBy Instance Simple
RatioMetric

grid: UnitExecutiontime

isMeasureBy Instance Simple
RatioMetric

SimpleRatioMetric

isaisa isa isa isa

isa isa isa

isMeasuredBy

isMeasuredBy

isMeasuredBy

Figure 2. GonQoS Ontology.

an atomic task;
- grid-UnitCost (euros): for query: maximum budget which can be spent to execute
a data parallel task; for advertising: cost for the execution of an atomic task.
- grid-Capacity (integer): for query: number of atomic tasks to execute; for adver-
tising: maximum number of atomic tasks which can be executed for a request.

These QoS parameters are classified as Simple Ratio Metric, a specialization
of generic QoS metric that permits to define queries adopting relation operators
(such as better or equal, tightly less of a certain value, etc.).

5. Matching Strategy Evaluation

The proposed framework for grid resource brokering was tested in order to evaluate
its validity and accuracy for the discovery and selection of resources that satisfy
deadline and budget constraints through the time minimization matching strat-
egy. An UDDI registry was used for the advertisement of Grid services. For each of
them, the providers specify WSDL descriptions, an UDDI categoryBag meta-data
for functional aspects and QoS metrics through the GonQoS ontology. The query
is formulated through the UDDI categoryBag for functional discovery of computa-
tional services and a QoS description of the required deadline, budget and number
of atomic tasks to execute. Semantic functional aspects are not exploited in this
experimentation, since we consider services virtualizing only computing function-
alities. The QoS description is adopted to perform the BQMF in order to throw
out the targets which do not satisfy the conditions ci ≤ B, ti ≤ D, gi ≤ N. The
AQMF performs the time minimization matching strategy assigning to the filtered
targets a part of the query capacity N . A computational service is implemented
as a Web Service that takes a certain interval time to execute an atomic task on
the basis of performance capability of the resource on which it is deployed. The
overall service query is satisfied invoking in a concurrent way the selected services
and waiting for their completion.

In this experimentation, we consider ten Grid services deployed in Axis 2.0
container based on Tomcat onto ten distributed resources equipped with a Pentium
IV 2.4 GHz and 512 MB of RAM. Resources are inter-connected through a Fast



A Framework for QoS-based Resource Brokering in Grid Computing 167

Service QoS per Atomic Task

Template # instances Capacity
Execution

Time (s)
Cost (euro )

S1 1 100 1.39 60.0

S2 1 100 9.6 10.0

S3 4 100 75.0 4.0

S4 1 100 77.0 4.0

S5 3 100 70.0 5.0

Table 1. Testbed Configuration.

1
5

10
15
20
25
30
35
40
45
50
55
60
65
70

40 50 60 70 80 90 100 110 120 130 140

N
. o

f t
as

ks
 fo

r 
R

es
ou

rc
e

Total n. of tasks

S1S
S2
S3
S4S
S5S

Figure 3. Tasks assigned to each service varying N , B=1200.00 euros.

Ethernet LAN that does not cause significant effects on adopted Grid model since
data transfers of atomic tasks are kept slight with respect to computational tasks.
Resource heterogeneity in terms of cost and performance are emulated taking into
account experimentation results previously conducted on a compute-intensive ap-
plication for power system security analysis [28]. In particular table 1 summarizes
the QoS parameters associated to each service. The cost parameters were chosen
to be nearly directly proportional to resource performance. In table 1 the service
instances with the same QoS parameters are grouped in the same service template.
Figure 3 shows the number of atomic tasks assigned to the services considering a
deadline of 900.0 s, a budget of 1200.00 euros and a query capacity varying from 40
to 140 atomic tasks. Because of similar capabilities of services with template S3,
S4 and S5, the strategy assigns roughly the same number of tasks to each of them.
In this scenario the budget of 1200.00 euros is not sufficient to completely exploit
expensive services. For this reason the time minimization strategy decreases the
number of atomic tasks assigned to the most expensive service, that in this case is
the one with template S2, and assigns them to the less expensive ones, until the
deadline is not exceeded. Moreover, because the service with template S1 has bet-
ter performance with respect to services with template S3, S4 and S5, it receives a
larger amount of atomic tasks, which increases with the query capacity. Figure 4
(a) shows the estimated execution times considering a query capacity of 180 atomic
tasks, deadline of 900.0 s and a varying budget from 1200.00 euros (the minimum
value to satisfy the deadline) to 4800.00 euros. The estimated execution time is
evaluated as the maximum value among the execution times of each service. We



168 Ranaldo and Zimeo

600

650

700

750

800

850

900

950

1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

E
xe

cu
tio

n 
tim

e 
(s

)

Budget value ( euro )

100

200

300

400

500

600

750

40 50 60 70 80 90 100 110 120 130 140

E
xe

cu
tio

n 
tim

e 
(s

)

Total n. of tasks

Estimated Time
Measured Time

(a) (b)

Figure 4. (a) Execution time varying budget with D = 900.0 s;
(b) Experimental results.

can note that by increasing budget, the algorithm ensures a decreasing execution
time thanks to the possibility to allocate more tasks to the expensive and higher
performance resources.

Finally, figure 4 (b) shows the execution times that we actually measured
running the application on the testbed varying the query capacity. It shows the
measured execution times and the estimated execution times by using the time
minimization matching strategy. As it is possible to observe, the measured execu-
tion times have a nearly linear trend with respect to the atomic tasks to execute,
condition that proves the efficiency of the overall system. Such times are, more-
over, very near to the execution times estimated by the algorithm. Finally these
experimental results proved that the proposed QoS-based brokering framework
represents a useful and flexible system for automatically acquiring computational
resources when they are necessary, since its accuracy is high and the overhead
that users pay for using such system for performing complex tasks is negligible if
compared to the improvement of performance and usability.

6. Conclusion

The paper presented the design and evaluation of a framework for QoS brokering
of Grid resources virtualized by Web Services. It is based on the Service Match-
maker, a framework that delivers customizable syntactic and semantic discovery
and matching strategies. In this work, we presented its customization for sup-
porting the selection of resources among which to distribute the workload of a
data parallel task with the aim to minimize execution time and to satisfy deadline
and budget constraints. The integration of service invocation mechanisms through
workflow technologies, in order to make automatic and transparent to the user the
distribution and deployment of applications on multiple resources, will be taken
into account in a future work. In particular, we are currently focusing on a dynamic
composition and binding technique of services able to transparently and hierarchi-
cally distribute applications based on the data parallelism pattern, following the



A Framework for QoS-based Resource Brokering in Grid Computing 169

approach proposed by the authors in [29] for the specification of a partition policy
of input data and of an assembling policy of results.

References

[1] I. Foster, C. Kesselman, J. Nick, S. Tuecke, The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. Technical Report, Open
Grid Service Infrastructure WG, Global Grid Forum, (2002).

[2] C. Pautasso, G. Alonso, Parallel Computing Patterns for Grid Workflows. In: Pro-
ceedings of the HPDC Workshop on Workflows in Support of Large-Scale Science
(WORKS06). (June 2006).

[3] K. Krauter, R. Buyya, M. Maheswaran, A Taxonomy and Survey of Grid Resource
Management Systems for Distributed Computing. Intern. Journal of Software, Practice
and Experience, Wiley Press 32(2) (2002) 135–164.

[4] G. Tretola, E. Zimeo, Structure Matching for Enhancing UDDI Query Results. In: Pro-
ceedings of the Int. Conf. on Service Oriented Computing and Applications. (2007).

[5] K. Li, Job Scheduling and Processor Allocation for Grid Computing on Metacomput-
ers. Journal of Parallel and Distributed Computing. 65(11) (2005) 1406–1418.

[6] T. Braun, et al., A Comparison of Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed Computing Systems. Journal of
Parallel and Distributed Computing 61(6) (2001) 10–837.

[7] M. Li, P. van Santen, D.W. Walker, O.F. Rana, M.A. Baker. PortalLab: A Web
Services Oriented Toolkit for Semantic Grid Portals. In: Proceedings of the IEEE
CCGrid. (2003) 190–197.

[8] H. Tangmunarunkit, S. Decker, C. Kesselman, Ontology-based Resource Matching in
the Grid - The Grid Meets the Semantic Web. In: Proceedings of the ISWC, (2003)
706-721.

[9] OWL-S. An OWL-based Web service ontology, http://www.daml.org/services/owl-s

[10] WSMO. http://www.wsmo.org/

[11] C. Zhou, L.T. Chia, B.S. Lee, DAML-QoS Ontology for Web Services. In: Proceed-
ings of the International Conference on Web Services. (2004) 472–479.

[12] G. Dobson, R. Lock, QoSOnt: an Ontology for QoS in Service-Centric Systems. UK
e-Science AHM. (2005).

[13] I. Toma, D. Foxvoug, M.C. Jaeger, D. Roman, T. Strang, D. Fensel, Modeling QoS
Characteristics in WSMO. In: Proceedings of the Middleware for Service Oriented
Computing Workshop (MW4SOC 2006). (2006) 42–47.

[14] E. Giallonardo, E. Zimeo, More Semantics in QoS Matching. In: Proceedings of the
Int. Conf. on Service Oriented Computing and Applications. (2007) 49–54.

[15] C. Zhang, R.N. Chang, C. Perng, E. So, C. Tang, T. Tao, QoS-Aware Optimization
of Composite-Service Fulfillment Policy. In: Proceedings of the IEEE SCC. (2007)
11–19.

[16] T. Ma, R. Buyya, Critical-Path and Priority based Algorithms for Scheduling Work-
flows with Parameter Sweep Tasks on Global Grids. In: Proceedings of the IEEE
SBAC-PAD. (2005) 251–258.



170 Ranaldo and Zimeo

[17] S. Venugopal, R. Buyya, L. Winton, A Grid Service Broker for Scheduling Distributed
Data-Oriented Applications on Global Grids. Technical Report, Grid Computing and
Distributed Systems Laboratory, University of Melbourne, Australia. (2004).

[18] A. Luther, R. Buyya, R. Ranjan, S. Venugopal, Alchemi: A .NET-Based Enterprise
Grid Computing System. In: Proceedings of the 6th Int. Conf. on Internet Computing.
(2005).

[19] A.S. McGouch, A. Afzal, J. Darlington, N. Furmento, A. Mayer, L. Young, Making
the Grid Predictable through Reservation and Performance Modelling. The Computer
Journal, Oxford University Press 48(3) (2005) 358–368.

[20] LOCOSP project. http://plone.rcost.unisannio.it/locosp

[21] UDDI4J. http://www.uddi4j.org

[22] M. Paolucci, T. Kawmura, T. Payne, K. Sycara, Importing the Semantic Web in
UDDI. In: Proceedings of the Web Services, E-Business and Semantic Web WorkshopII
(CAiSE 2002). LNCS, Springer-Verlag 2512 (2002) 815-821.

[23] Y. Wang, E. Stroulia, Flexible Interface Matching for Web-Service Discovery. In:
Proceedings of the IEEE WISE, (2003) 147–156.

[24] Jena 2.4, http://jena.sourceforge.net/

[25] Pellet Reasoner, 1.3, April 17, 2006, http://www.mindswap.org/2003/pellet/

[26] L. Marchal, Y. Yang, H. Casanova, Y. Robert, A Realistic Network/Application
Model for Scheduling Divisible Loads on Large-Scale Platforms. In: Proceedings of the
Int. Parallel and Distributed Processing Symposium. (2005).

[27] N. Ranaldo, E. Zimeo, An Economy-driven Mapping Heuristic for Hierarchical
Master-Slave Applications in Grid Systems. In: Proceedings of the IEEE IPDPS.
(2006).

[28] Q. Morante, N. Ranaldo, A. Vaccaro, E. Zimeo, Pervasive Grid for Intensive Power
System Contingency Analysis. IEEE Trans. on Industrial Informatics, 2(3) (2006)
165–175.

[29] N. Ranaldo, E. Zimeo, A Transparent Framework for Hierarchical Master-Slave Grid
Computing. In: Proceedings of the EuroPar06 - CoreGrid Workshop on Grid Middle-
ware, LNCS, Springer-Verlag 4375 (2007) 74–86.

Acknowledgment

The work described in this paper is framed within the activities of the Core Grid
FP6 Network of Excellence funded by the European Commission.

Nadia Ranaldo
Department of Engineering - University of Sannio
82100 - Benevento - Italy
e-mail: ranaldo@unisannio.it

Eugenio Zimeo
Department of Engineering - University of Sannio
82100 - Benevento - Italy
e-mail: zimeo@unisannio.it



Whitestein Series in Software Agent Technologies, 171–185
©c 2008 Birkhauser Verlag Basel/Switzerland¨

Model-Driven Performance Evaluation for
Service Engineering

Claus Pahl, Marko Boškovi´ˇ c and Wilhelm Hasselbring´

Abstract. Service engineering and service-oriented architecture as an integra-
tion and platform technology is a recent approach to software systems inte-
gration. Software quality aspects such as performance are of central impor-
tance for the integration of heterogeneous, distributed service-based systems.
Empirical performance evaluation is a process of measuring and calculating
performance metrics of the implemented software. We present an approach
for the empirical, model-based performance evaluation of services and ser-
vice compositions in the context of model-driven service engineering. Tempo-
ral databases theory is utilised for the empirical performance evaluation of
model-driven developed service systems.

Keywords. Service-oriented Architecture, Model-Driven Development, Perfor-
mance Evaluation, Instrumentation.

1. Introduction

The complexity of software makes its development costly and error-prone. Model-
driven engineering (MDE) is an approach to deal with complexity by making soft-
ware models primary artefacts of the development process. A model is closer to
the problem domain than to the underlying implementation. Therefore, it moves
the focus of software engineering from technology-specific implementation to the
problem domain. MDE utilises two aspects of models. Firstly, complete imple-
mentations can be generated from models, but more importantly here, predictions
about a software system can be made based on a model. A fully model-based ap-
proach hide code-level details and allows a software architect to concentrate on
design-stage artefacts.



172 Pahl, Boškovi´ˇ c and Hasselbring´

To provide trustworthy software, quality attributes [4] have to be satisfied.
Quality aspects have not been addressed in sufficient depth in the context of het-
erogeneous, distributed, service-based systems. Service engineering and service-
oriented architecture as an integration and platform technology is a recent ap-
proach to service-based software system integration. Performance as one of quality
attributes, defined as a degree to which a software system meet its objectives for
timeliness [5], is of central importance in this context.

At present, research in model-driven performance engineering is mostly dedi-
cated to simulation and performance prediction with mathematical analysis meth-
ods [6, 7]. Nevertheless, predictions have to be validated when a software system
is implemented and deployed. Validation should be based on modelling constructs
as predictions are made according to them. Currently, timing behaviour is ana-
lyzed based on source code constructs (e.g., method execution time). In MDE,
the level of abstraction is raised. Consequently, observations should be based on
modelling constructs, such as components and their states, activities, interactions
or methods.

In software engineering, instrumentation is the process of adding software
probes to the program [5]. Software probes are additional pieces of code for col-
lecting data about the software execution. A model-based language for instrumen-
tation needs to be derived. Instrumentation languages can enforce data collection
in relational manner.

We investigate the empirical performance evaluation of model-driven service-
based systems. We focus on composed (or orchestrated) services processes and
address their performance behaviour. We present work-in-progress that comprises:

• an instrumentation notation for service models that allows specific service
model elements such as services or composition and flow operators to be an-
notated and marked as providing performance-relevant time information at
execution time. We use UML activity diagrams to express service composi-
tions and base our instrumentation language on this UML diagram format.
Our work follows others in using UML beyond classical software design. The
Erickson-Penker Business Extensions for UML [2] for instance permits UML
to document an entire business enterprise.

• model-driven transformation techniques that generate executable code in-
cluding the monitoring instructions necessary to record time information.

• a trace analysis query language. This language provides the ability to calcu-
late performance metrics such as response time and throughput. The eval-
uation is based on temporal databases theory [8]. The temporal databases
theory relates facts stored in a relational manner with time information. A
relational trace is a dynamic list of events and timing information generated
by the program as it executes [9]. A query language allows the evaluation
based on the traces in terms of service model elements.

Empirical code-level instrumentation and analysis has been investigated in depth.
Simulation and analytical models have been used to provide support at design



Model-Driven Performance Evaluation 173

stages of the development process. Our contribution represents a novel approach
for the empirical, model-level evaluation of performance for service-based software
systems that

• firstly, an empirical and, thus, ultimately more accurate and reliable tech-
nique than simulation and analysis,

• secondly, a fully model-based evaluation technique for the architect that hides
code-level details.

The paper is structured as follows. The next section gives an overview of
model-driven engineering and service engineering. Motivation and foundations of
performance engineering are presented in Section 3. Section 4 introduces the in-
strumentation language. Performance monitoring through code generation and
instrumented execution is described in Section 5. The analysis of evaluation data
is discussed in Section 6. Related work is discussed in Section 7 and Section 8
concludes the paper.

2. Model-Driven Development and Service Engineering

The general idea of model-driven engineering (MDE) is to introduce a model as
a first-class entity. With models, the development focus is moved to the problem
domain. Models often enable the exploitation of formal methods. With abstrac-
tion, the understanding of the problem and its realization can be improved. Of-
ten, a complete implementation can be generated [10]. Model Driven Architecture
(MDA) [11] is one approach for MDE initiated by the Object Management Group
(OMG), a consortium of software vendors and users. MDA is based on three ideas:
direct representation to shift the focus of software development away from technol-
ogy toward the problem domain, automation to mechanize the relation of semantic
concepts of problem domain and implementation domain, and open standards to
enable interoperability to close the semantic gap between domain problems and
implementation technologies. Our aim is to enable the evaluation of service per-
formance when the primary artefact is a service (or service process) model.

A service is defined as a piece of software, whose public interfaces are defined
and described using an interoperable format. Other systems can interact with the
service in a manner prescribed by its definition. The composition of services to
orchestrated processes is a major concern in current Web service research [12,
13]. These recent developments have strengthened the importance of architectural
questions such as service composition.

Modelling can support these architectural questions. Behaviour and interac-
tion processes are central modelling concerns for service-based software architec-
tures. Fig. 1 illustrates how a UML activity diagram can be used to express a
service orchestration – at an abstract level without addressing individual service
providers. Four services that provide an online bank account facility login, bal-
ance, transfer, and logout are orchestrated into a process starting with a login,



174 Pahl, Boškovi´ˇ c and Hasselbring´

login

balance

transfer

logout
{user,account}}

{account}

{account,,
destination,

amount}

{sessionID}}

{sessionID}

{balance}

{void}

{void}{

Figure 1. Service Process modelled using a UML activity diagram.

then allowing a user to iteratively choose between balance enquiries and money
transfers, before logging out.

Explicit models enable developers and clients of services to create reliable
service architectures using tool support. A model-driven development approach
can even support automated code generation and performance analysis. Assuming
that concrete, provided services are already attached to each service element, then
an executable WS-BPEL process for the Web service platform can be generated. As
we are going to demonstrate, the service composition model can be instrumented
for empirical performance analysis and executable processes including performance
monitoring functionality can be generated.

3. Performance Evaluation

3.1. Software Performance, Evaluation and Motivation

Performance is considered as the degree to which a software system or compo-
nent meets its objectives for timeliness [5]. It can be evaluated with simulation,
analytical modelling or empirically [9]:

• Simulation is an imitation of a program execution focusing on specific aspects.
It is less expensive than building a real system for empirical evaluation. It
is flexible as changes can be dealt with easily if the simulation is derived
automatically. However, simulation can suffer from a lack of accuracy.

• Analytical modelling is a technique where a system is mathematically de-
scribed. Results of an analytical model can be less accurate than real-system
measurements. However, analytical models are often easy to construct.

• Empirical evaluation is performed by measurements and metrics calculation.
They provide the most accurate results as no abstractions are made.

The downside of performance evaluation by implementation, however, includes
hardware dependency, extra cost of creating a prototype and deploying it, imple-
mentation deficiencies, and challenges in representative workload creation. Two
observations led us to consider model-based empirical evaluations. Firstly, an ap-
proach for empirical evaluations of software performance for service-based software



Model-Driven Performance Evaluation 175

systems is still lacking despite its accuracy benefits. Secondly, empirical measure-
ments and evaluations are currently performed only at the code level and mostly
based on code constructs.

In model-driven engineering, observations of behaviour should be in terms
of modelling constructs. Instrumentation for observing software should also be
expressed in terms of these constructs in order to prevent the software architecture
from having to represent transformation details and having to deal with code-level
details. A necessary part of empirical performance evaluation is the execution data
collection through instrumentation.

3.2. Instrumentation

Instruments and instrumentation are commonly used for observing system be-
haviour and evaluating system properties in a range of disciplines. In software
engineering, instrumentation is the process of adding software probes to a pro-
gram [5]. Software probes are pieces of code for collecting data about the software
execution. Two techniques for data collection exist:

• Sampling is a technique where parts of a program are sampled during its
execution in some time interval - an example is sampling the program stack
to follow program execution. It is a statistical technique in which a represen-
tative sample of data about the execution is taken. An advantage is that the
impact on the performance of the program does not depend on the execution
of the program. However, collected samples are different from run to run.
The possibility that infrequent events are missed is another drawback.

• Event tracing is a process of generating traces of events in the software ex-
ecution. A program trace is a dynamic list of events generated as the pro-
gram executes [9]. A trace contains time-ordered events and can be used to
characterize the overall program behaviour. Problems can be caused due to
measurements. Each probe that is added causes execution overhead (perfor-
mance) and event traces require resources (memory).

Due to its greater reliability, event tracing is used here. Event tracing is also more
suitable for service-based software where the focus is on services as black-box
entities that interaction in compositions. Traces are presented in our approach in
relational manner using the concepts of temporal database theory to support the
performance evaluation of traces.

3.3. Temporal Databases

Temporal databases support a notion of time [8]. In contrast to conventional
databases, in which only facts are stored, each fact stored in a temporal data-
base is associated with some time information. These facts can be related to a
valid time dimension and to a transaction time dimension. The valid time dimen-
sion is related to the time when the fact was true in reality. The transaction time
dimension is related to the presence of the fact in the database.

Temporal databases which store only facts about the past are called historical
databases [8]. Historical databases define two kinds of relations, event and interval



176 Pahl, Boškovi´ˇ c and Hasselbring´

Event & Interval
Traces

Query
&

Evaluate

Execution with Probes

Model with Instrumentation

Figure 2. Overview of the Framework.

relations [14]. Interval relations are used for storing facts which were true for some
time interval. Event relations are used for storing facts which were true at some
particular time point.

We utilise concepts from historical databases, such as both interval and event
relations, to instrument service composition models.

4. Instrumentation

The execution of a program, such as execution and interactions of a composite
service, can be characterized in terms of event and interval relations. For instance,
if an element of a modelling language models a part of the program execution
which lasts for some time interval, it can be instrumented by a specialization of
the interval trace. Our instrumentation technique is developed around an instru-
mentation language, which is integrated with the service modelling language, i.e.
is an extension of the UML activity diagrams that we use to model service or-
chestrations. Both service orchestration language and instrumentation language
are presented at the meta-model layer. We present an overview of the approach in
Fig. 2 that relates modelling and execution.

4.1. Service Process Meta-model

The banking example based on the orchestration of services to a service process
from Fig. 1 is formulated in terms of a UML activity diagram. A (simplified)
definition of UML activity diagrams as a process language is based on activity
nodes and edges to represent services and their connectivity, respectively. We have
given preference to UML activity diagrams over other process notations such as
BPMN, because of UML’s elaborate language extension mechanisms.

4.2. Instrumentation Meta-model

Our instrumentation notation comprises of two parts. Firstly, a basic trace package
(Fig. 3) to capture the notion of traces, i.e. event and interval traces, and operations



Model-Driven Performance Evaluation 177

Trace

Field

Operation

IntervalTraceEventTrace EventOpIntervalOp

EndPeriodStartPeriodPeriodInterval EventTime

IdentOp

Figure 3. Basic Trace Package.

to capture these traces. Secondly, the instrumentation of activity diagrams using
the MOF profile extension mechanism (Fig. 4).

The basic trace package reflects the required time dimensions and the record-
ing concepts. The activity diagram instrumentation utilises these. This separation
allows the basic instrumentation principles to be reused in a range of problem-
specific or even model-specific circumstances – which is important as domain-
specific languages are increasingly important. In the given instrumentation, actions
as the central elements of activity diagrams and all control nodes are annotated.
The execution of actions, which represent services at the model level, takes some
time, i.e. an interval trace should be recorded at performance evaluation or exe-
cution time. We assume control flow decisions such as start and end of the overall
process or choices and mergers as instantaneous events, i.e. modelled as event
traces. This is a decision that can be modified at the Instrumentation Diagram
level, without affecting the basic trace package. This provides for easy adaptability
of the instrumentation to different interpretations and modelling languages.

4.3. Instrumentation Application

The application of the instrumented activity diagram is illustrated in Fig. 5. Two
types of model elements - actions such as login or transfer and control nodes such
as the start or the first decision point - are instrumented. An interval consisting
of begin and end time of the service executions that implement the actions are
recorded as a consequence of this instrumentation. Events, i.e. individual time
stamps, are recorded for the control nodes.

For the service architect, it is import to find an adequate instrumentation
that provides answers to the relevant performance questions. For instance, in a
particular situation only the response times (average, maximum) of particular
services, such as the account management services balance and transfer, are of
interest. Then, the instrumentation needs to reflect these requirements.



178 Pahl, Boškovi´ˇ c and Hasselbring´

Activity

Activity Node Activity Edge

Control Flow Object FlowControl NodeObject Node Action

targetg

source

in

out

ActionTrace ControlNode
Trace

IntervalTrace EventTrace

Figure 4. Activity Diagram Instrumentation.

login

balance

transfer

logout
{user,account}}

{account}

{account,,
destination,

amount}

{sessionID}}

{sessionID}}

{balance}

{void}

{void}{

<<ActionTrace>>
TransferTrace

ServiceTime: IntervalTime

<<ActionTrace>>
BalanceTrace

ServiceTime: IntervalTime <<ActionTrace>>
LogoutTrace

ServiceTime: IntervalTime

<<ActionTrace>>
LoginTrace

ServiceTime: IntervalTime

<<ControlNodeTrace>>
StartTrace

StartTime: EventTime

<<ControlNodeTrace>>
EndTrace

EndTime: EventTime
<<ControlNodeTrace>>

DecisionTrace

DecisionTime: EventTime

<<ControlNodeTrace>>
MergeTrace

MergeTime: EventTime

Figure 5. Application of the Instrumentation to the online bank-
ing service process.

While we consider this instrumentation of actions and control nodes to be
the standard, the approach is flexible enough to accommodate context-specific cus-
tomisations. Some control nodes could be excluded or other modelling elements
could be added. This is only limited by the extent to which transformation and
code generation support the different model element instrumentations. The instru-
mentation of elements could be disabled that are difficult to implement or whose
analysis would not provide useful performance information.



Model-Driven Performance Evaluation 179

5. Performance Monitoring

The implementation of the instrumentation should be, firstly, easy to realise and,
secondly, implemented without significant overhead. Aspects and interception tech-
niques can be utilised to implement the instrumentation and data collection. Al-
though an important aspect of performance evaluation, the focus of this paper is
on the model-related issues of instrumentation specification (such as instrumenta-
tion meta-models) and data query and assessment activities (which are discussed
later on). We only discuss principles of monitoring here.

5.1. Intrumentation and Monitoring

In the services context, often the problem arises that the addition of probes into
the service implementation is not possible due to the nature of services as true
black box software components. We therefore distinguish two scenarios:

• controlled environments that allow access to code. Aspect Oriented Program-
ming (AOP) [15] is a programming approach, suitable for the controlled ap-
proach, which can be used for transparent software instrumentation. AOP
is a technique that enables the separation of instrumentation from the de-
velopment of the core software functionality [16, 17]. Marenholz et al. [17]
use AspectC++ for the instrumentation of operating systems for debugging,
profiling/measurement, and runtime surveillance/monitoring.

• open environments in which services are black-box components. For a trans-
parent instrumentation of component systems, interceptors can be used. In-
terceptors are similar to AOP and can intercept method invocations to trans-
parently instrument a program [18, 19]. Software probes can be predefined
and placed in stubs and skeletons during an interface description compilation
[19]. The probes can be turned on and off at runtime.

The JBoss Application Server, for instance, enables the transparent aspect-oriented
addition of functionality. Its AOP features allow the interception of events and ad-
dition of trigger functionality based on those events.

5.2. Generation of Instrumented Code

Aspect Oriented Programming, interceptors, and bytecode and platform instru-
mentation are approaches that enable the collection of data without affecting the
functionality. We utilize these ideas to collect data about the software execution
at the model level as a separate concern.

The first step, however, is the generation of executable and instrumented
code. Activity diagrams that model service orchestrations can be converted into
executable Web services processes, if invocation information such as the service
location is added to the abstract service process description:

• AOP concepts are used to generate the instrumented executable service code.
• Interception mechanisms add instrumentation and data collection.



180 Pahl, Boškovi´ˇ c and Hasselbring´

TransferTrace:
ServiceTime: IntervalTime

2:22 2:45

3:03 3:12

3:15 3:29

DecisionTrace:
DecisionTime: EventTime

2:19

2:50

3:01

3:10

3:35

Figure 6. Collected Data for Online Banking Process Instrumentation.

We propose ATL transformations – the ATLAS Transformation Language ATL is
a tool-supported hyrbid model transformation language for the ecplise platform –
to transform activity diagrams into AOP-based code.

5.3. Performance Data Recording

The instrumentation includes monitoring and data collection functionality. Data
is stored in a historical database such as TimeDB or temporal features in Oracle
database servers. Fig. 6 shows a sample recording for the composite process for
online banking based on the instrumentation defined in Fig. 5. Here, only data for
the decision node and the transfer service are provided as samples.

6. Performance Evaluation

6.1. Analysis Language

Temporal and historical databases – which provide the conceptual background for
the analysis part of our evaluation technique – are usually extensions of traditional
relational databases. SQL is therefore available as a query language to retrieve
information in relation to the recorded event and interval times and to use the
language for common statistical operations.

The objective is to extract performance-relevant information from the basic
times stored in a historical database that allows a software architect to assess the
overall performance of individual services and also orchestrated processes. SQL is
sufficient as a query language to formulate the relevant performance assessment
queries. More advanced solutions like data warehouses with their extended evalua-
tion support are not required. We can classify performance assessments as follows:

• Response time assessment: response times of activities are usually recorded
as intervals. The SQL aggregate functions, such as average AVG or maximum
MAX, provide the relevant answers.



Model-Driven Performance Evaluation 181

• Frequency and distribution of invocations: the distribution of invocations
(workload) between the individual services can be determined based on the
calculation of ratios between total numbers of invocations.
The database representation directly reflects the modelling layer, as the rep-

resentation is generated from the model instrumentation. The central goal of fully
model-based performance evaluation is therefore achieved. The queries can conse-
quently be formulated in terms of relevant model elements - which is one of the
central objectives of model-driven quality engineering.

6.2. Performance Analysis

We have already classified the different types of performance assessments in the
previous section. We now illustrate these types.

The average response time for service ’transfer’ can be determined as follows:
SELECT AVG(ServiceTime)
FROM TransferTrace

The determination of the maximum time can be formulated analogously. In
the SOA context, where individual services are often provided by external organi-
sations, this information is usually part of contracts and service-level agreements.

The proportion of ’transfer’ invocations based in relation to all user selections
(decisions) can also be formulated:

SELECT COUNT(ServiceTime) / COUNT(DecisionTime)
FROM TransferTrace, DecisionTrace

This would allow a software architect to judge the frequency of individual
service activations in typical application scenarios.

7. Related Work

There are several approaches for analytical evaluations of software performance
from annotated models [7, 20] and simulation [21, 26]. A detailed survey related
to performance prediction can be found in [6]. There are also several approaches
for measurement and instrumentation in the context of code-centric development.
Our contribution is an empirical instead of analytic technique for model-level eval-
uation.

• Snodgrass [22] introduces a relational approach for monitoring systems. His
work shows that a relational data structure can be an appropriate formalism
for monitoring dynamic behaviour of a system. The programmer manually
defines the instrumentation according to concepts of an existing system. Our
approach provides a schema for the definition of instrumentation languages
according to the modelling formalism used for the specification of programs.

• Liao et al. [23] introduce a high-level language for program instrumentation
and monitoring. A programmer specifies monitoring and measuring informa-
tion, based on which a static analysis of code is done and instrumentation is
added. However, their language is suited only for procedural languages.



182 Pahl, Boškovi´ˇ c and Hasselbring´

• Another language for program instrumentation is the Metric Description Lan-
guage (MDL) [24]. MDL has the ability to define instrumentation as a sepa-
rate concern, independent of the program functionality, define points at which
measurement actions should take place and weave these into a program at
runtime. However, it is limited to functionally decomposed systems.

The idea on integrating software models and instrumentation is introduced in
[25]. The authors develop a set of tools for a model-driven instrumentation. They
define different program models such as a functional program model, a functional
implementation model, a performance model and a monitoring model. Based on
the monitoring model, the source code is instrumented and trace descriptions
are generated. In our approach, the primary artefact of software development is
a model. Therefore, instrumentation is done at the model level. The functional
implementation model is actually a product of software development. Furthermore,
instrumentation defines what to measure and where to measure, and from these
two models, automatically source code is produced.

In the specific context of service-based modelling, a lack of performance anal-
ysis is even more evident, although the need to address performance is recognised
[26] and some solutions exist. The Application Response Measurement (ARM)
standard [1] enables the collection of performance data. It is a conceptual library
suited for usage with programming constructs. We relate our data collection with
modeling constructs on a higher level of instrumentation. The standard only en-
ables the collection of data, but not a systematic way of analyzing. ARM is only
an interface for measurement. We introduce a systematic approach for data anal-
ysis as well as for instrumentation. A different architectural approach is taken in
workflow management contexts [3]. Techniques in available workflow management
languages and systems exist that provide timers, which allow to measure the in-
vocation times out-of-the box by the workflow engine itself. Our solution adds a
summarization component that performs arithmetic functions over a configurable
period of time in a different architectural setting.

8. Conclusions

Empirical performance evaluation enables the validation of timeliness of a software
system. In particular in service-oriented architecture, where software quality is
paramount, the empirical approach that evaluates concrete application platforms is
promising. However, currently an approach for empirical performance evaluation in
the service development process where a model is the primary software artefact, is
lacking. In order to provide software architects with tools for the reliable evaluation
of performance, which goes beyond the predictive approaches of simulation and
abstract analysis, a fully model-based instrumentation and analysis technique is
necessary. The benefit of an empirical technique over predictive approaches is
increased accuracy and therefore reliability of the evaluation results.



Model-Driven Performance Evaluation 183

We have presented a service-specific approach for the empirical performance
evaluation of model-driven developed services. Instrumentation and empirical per-
formance evaluation is at the moment done based on programming language con-
structs at the source code level. Instrumentation at source code level for data
collection about program executions in terms of modelling elements can be error-
prone and can require significant effort. Therefore, the instrumentation needs to
be done at the model level. The models for software functionality definition and
instrumentation definition are separated to reduce the complexity of models.

Our contribution is based on a basic package for the definition of instrumen-
tation languages for UML-based activity diagrams to model service orchestrations,
a methodology for deriving instrumentation languages, and a query language for
performance metrics calculation. The instrumentation languages enable automati-
cally generated data collection in terms of modelling language constructs, and are
stored in the format of relational traces. Temporal database theory provides the
background for the monitoring and analysis elements of the evaluation technique.

The instrumentation language is designed to be generic. The basic instru-
mentation package is application-independent and is, since it is separated from
the application-specific instrumentation of specific model elements, transferable
to other modelling notations and modelling domains. In order to demonstrate the
flexibility of this approach, applications of our framework to class and state models
are being investigated.

Currently, our generation and execution platform is not fully implemented.
We plan to critically evaluate the feasibility of the approach by integrating software
performance evaluation based on relational traces in some commercial tools for
model-driven development. Furthermore, experiments on an extensive case study
will be performed in order to show what the impact of instrumentation code and
execution of the instrumented application is.

Another aspect specific to services shall be investigated in more detail. Our
current work neglects specific issues arising from heterogeneous and fully dis-
tributed systems. The models we have considered here are activity diagrams that
focus on the functional composition of services. The models used do not include
the concept of distribution. Activity diagrams, however, allow modelling of distri-
bution through activity partitions (so-called swimlanes). Since especially perfor-
mance aspects apply to distributed service invocations, corresponding edges that
cross partitions could be instrumented and the system could be monitored with
respect to these inter-location invocations. We expect spatial-temporal databases
to provide the foundations for this aspect.

References

[1] Open Group. Application Response Measurement - ARM. 2002.MM

[2] M. Penker and H.E. Eriksson. Business Modeling With UML: Business Patterns at
Work. Wiley, 2000.



184 Pahl, Boškovi´ˇ c and Hasselbring´

[3] A. Kumar, W.M.P. Van Der Aalst, and E.M.W. Verbeek. Dynamic Work Distribu-
tion in Workflow Management Systems: How to Balance Quality and Performance,
Journal of Management Information Systems, 18(3):157–193, 2002.

[4] W. Hasselbring and R. Reussner. Toward trustworthy software systems. Computer,
39(4):91–92, 2006.

[5] C.U. Smith and L.G. Williams. Performance Solutions: A Practical Guide to Creat-
ing Responsive, Scalable Software. Addison-Wesley, 2001.

[6] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-Based Performance
Prediction in Software Development: A Survey. IEEE Transactions on Software En-
gineering, 30(5):295–310, 2004.

[7] Object Management Group. UML Profile for Schedulability, Performance, and Time
Specification, OMG document formal/05-01-02. web: http://www.omg.org/cgi-
bin/apps/doc?formal/05-01-02.pdf, 2005.

[8] C. Zaniolo, S. Ceri, C. Faloutsos, R. Snodgrass, V. S. Subrahmanian, and R. Zicari.
Advanced Database Systems. Morgan Kaufmann Pubishers, 1997.

[9] D.J. Lilja. Measuring Computer Performance: A Practitioner’s Guide. Cambridge
University Press, 2000.

[10] B. Selic. The Pragmatics of Model-Driven Development. IEEE Software, 20(5):19–
25, 2003.

[11] Object Management Group. MDA Guide. web: http://www.omg.org/cgi-
bin/doc?ormsc/06-06-02.pdf, 2006.

[12] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services – Concepts, Archi-
tectures and Applications. Springer-Verlag, 2004.

[13] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice (2nd Edi-
tion). SEI Series in Software Engineering. Addison-Wesley, 2003.

[14] N.L. Sarda. Extensions to SQL for Historical Databases. IEEE Transactions on
Knowledge and Data Engineering, 02(2):220–230, 1990.

[15] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In Proc. of European Conf. on Object-
Oriented Programming, volume 1241, pages 220–242. Springer-Verlag, 1997.

[16] M. Debusmann and K. Geihs. Efficient and Transparent Instrumentation of Applica-
tion Components using an Aspect-oriented Approach. In 14th IFIP/IEEE Workshop
on Distributed Systems: Operations and Management (DSOM 2003), volume 2867
of LNCS, pages 209–220. Springer, 2003.

[17] D. Mahrenholz, O. Spinczyk, and W. Schroeder-Preikschat. Program Instrumenta-
tion for Debugging and Monitoring with AspectC++. In Proc. 5th Int. Symp. on
Object-Oriented Real-Time Distributed Computing ISORC ’02, pages 249–256. IEEE
Computer Society, 2002.

[18] M. Debusmann, M. Schmid, and R. Kroeger. Measuring End-to-End Performance of
CORBA Applications using a Generic Instrumentation Approach. In ISCC ’02: Proc.
7th Int. Symp. on Computers and Communications, pages 181–186. IEEE Computer
Society, 2002.

[19] J. Li. Monitoring of Component-Based Systems. Technical Report HPL-2002-25,
Imaging Systems Laboratory, HP Laboratories Palo Alto, 2004.



Model-Driven Performance Evaluation 185

[20] D.B. Petriu and M. Woodside. A metamodel for generating performance models
from UML designs. In Proc. Int. Conf. The Unified Modelling Language: Modelling
Languages and Applications, LCNS 3273, pages 41–53. Springer-Verlag, 2004.

[21] D. Park and S. Kang. Design phase analysis of software performance using aspect-
oriented programming. In O. Aldawud, G. Booch, J. Gray, J. Kienzle, D. Stein,
M. Kande, F. Akkawi, and T. Elrad, editors,´ The 5th Aspect-Oriented Modeling
Workshop In Conjunction with UML 2004, 2004.

[22] R. Snodgrass. A Relational Approach to Monitoring Complex Systems. ACM Trans-
actions on Computer Systems, 6(2):157–196, 1988.

[23] Y. Liao and D. Cohen. A Specificational Approach to High Level Program Monitor-
ing and Measuring. IEEE Trans. on Software Eng., 18(11):969–978, 1992.

[24] J. K. Hollingsworth, O. Niam, B. P. Miller, Z. Xu, M.J.R. Goncalves, and L. Zheng.
MDL: A Language And a Compiler For Dynamic Program Instrumentation. In PACT
’97: Proc. 1997 Int. Conf. on Parallel Archit. and Compil. Techniq., pages 201–213.
IEEE Comp. Society, 1997.

[25] R. Klar, A. Quick, and F. Soetz. Tools for a Model–driven Instrumentation for
Monitoring. In Proc. 5th Int. Conf. on Modelling Techniques and Tools for Computer
Performance Evaluation, pages 165–180. Elsevier, 1991.

[26] M.B. Blake. A Lightweight Software Design Process for Web Services Workflows.
Proceedings International Conference on Web Services ICWS 2006, pages 411–418,
IEEE Computer Society, 2006.

Claus Pahl
Dublin City University
School of Computing
Dublin 9
Ireland
e-mail: cpahl@computing.dcu.ie

Marko Boskovi´ˇ c
University of Oldenburg
Software Engineering
D-26111 Oldenburg
Germany
e-mail: boskovic@informatik.uni-oldenburg.de

Wilhelm Hasselbring
University of Oldenburg
Software Engineering
D-26111 Oldenburg
Germany
e-mail: hasselbring@informatik.uni-oldenburg.de



Author Index

Baldoni, Matteo 5 Schifanella, Claudio 5
Barchewitz, Katja 23 Schwenk, Jörg 141¨
Baroglio, Cristina 5 Silva, Eduardo 59
Berbner, Rainer 97 Stein, Sebastian 23
Boskoviˇ c, Marko 171 Steinmetz, Ralf 97´

Charfi, Anis 97 Tran, Cuong M. 77

Dustdar, Schahram 1 Zimeo, Eugenio 159

El Kharbili, Marwane 23

Ferreira Pires, Luis 59

Gajek, Sebastian 141
Grasselt, Mike 111

Habich, Dirk 111
Hasselbring, Wilhelm 171

König-Ries, Birgitta 41¨
Kuster, Ulrich 41¨

Lau, Kung-Kiu 77
Lausen, Holger 41
Lécu´´ e, Freddy 59´
Lehner, Wolfgang 111
Liao, Lijun 141

Maier, Albert 111
Martelli, Alberto 5
Mezini, Mira 97
Moller, Bodo 141¨

Overdick, Hagen 129

Pahl, Claus 171
Patti, Viviana 5
Preissler, Steffen 111

Ranaldo, Nadia 159
Richly, Sebastian 111



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [7200.000 7200.000]
>> setpagedevice




